Tapestry Developer's Guide
Howard Lewis Ship

Tapestry Developer's Guide
Howard Lewis Ship
Copyright © 2000, 2001, 2002, 2003 The A pache Software Foundation

Table of Contents

O 1 g0 [1 o o P 1
SCripting VS. COMPOMNENLSceutuieittieeeeti ettt et e et e et et e e e et r e e e e e e e e et e e e e ana e eeeneaes 1
Fp11= = "o (o o [PP PTRPTRN 4
<ot U Y/ 5
RTAT = o I AN o] o 1= 0] 5
FEBUNES ..t e e enes 6

2. JavaBeanS and ProPertiESoiiiii it 8
JAVBBEANS ...t et eas 8
JAVABEANS PrOPEITIESieeiiit ittt et e e et e et et e e et a et aeaa e 8
Property Patiisc..oieii i 10
Object Graph Navigation Librarycocoeieiiiiiii e e 10

G 1= === 1 VA @0 .01 o0 = 1 11
Parameters and BiNINGSccoouuiiiiiiii e 11
CONNECLEH PaIaIMELENS ... ettt e e e e et e et e e et e e e e e e et e e et e e et e eeaneeees 12
Formal vs. INformal ParamELErScocuuiiiiiiii e ea 14
Embedded COMPONENESouiiii e e e e e e e e e e e e e ees 14
L I I = 00T = =P 15

Localizing SectionS Of @temMPlalevvveiiiie e 16
ComponentSWIth BOGIESccouiiiiiiii e e 16
Tapestry and HTML ProdUCHIONocieeiiiiiii ettt e e 17
IMplicitly removed DOAIESc..iiiii e e 17
EXplicitly removed DOTIESiiiiii e 18
Limiting template CONENiiee e e e e e e e e e e e e e eees 18
100 PSPPSRI 19
[0 o= (o o PP 19
Localization WIth SEFNGSeieiii et 19
Localization With TEMPIELESuiie et 20
= £ SPPR 20
L [101 = =01 PP 21

A, TAPESITY PAOESiiiiiieiiie ettt et e et et et e e e e et e e e e e e e e e an 22
PAOE SEAEE ...t n e 22
PErSISIENT PagE ST ... cieete et 23
EJB Page PrOPEITIES ... eeiiiii ittt ettt et et e e e ea e 24
DYNAMIC PAgE SEAE ... oeeiieie et e e e e e 25
Stale Links and the Browser Back BULONuiiiiiiiiiiiii e 27
Page Loading and POOIINGcccuiiiiiiiie et e e e e e e e e e aa e 28
PAgE LOCAIIZAION ...oeveeieee e ettt 30
PagE BUFTEITNG ... eiieiii ettt e et e e e e e e e 31
PagE BEVENTS ... et eas 31

5. Application ENQGINES @N0 SEIVICESoeuiiniiiieii e et e e e e e e e e e e e e et e et e e eenas 34
YN o o1z 1 o 1T Y =t 34
L S TU TR =0 =0 (=P 35
S Y1 B o (SIS - 1 37
SEAEfUL VS, SEAEEIESS ...t 37
ENQING SEIVICES ...ttt e et et e e e e e et e e et a et e e e e ea e 37
1 T oo N 39
AV (S A = PPN 40

6. Understanding the REQUESE CYCIEiiei e e e e 41
Service URLS and QUENY PArAIMELETSccuuurieetiieeeeiii e e e et e e e et e et e e e e e e et e e e eeaa e eeenans 41
P A0S SEIVICR .ttt e e et e e e ea e aee 41
ACtioN aNd DIFECE HISLENEIS ...t e e e et e e e aeas 42
DITECE SBIVICE ...ttt ettt e et et ettt e et e et et e e e e e ea e 44
Yo 1o gl = Vo PSP 45

Tapestry Developer's Guide

SENVICES ANA FOMMIS ...ttt e et e e ettt e e e et e e e et neeeenens 47
7. Designing Tapestry APPHICALIONSuiiiiiieieeee eenaas 48
PErSISIENt SLOMBOE SLIAIEGY ... eeeeti ettt ettt ettt e ettt e et e e et et e e et et e e e e et e e e eabaaeeees 48
Identify Pages and Page FIOW oo 48
[dentify COMMON LOGICuieeieitiiet ettt et ettt et e et e e et e e et e e et e e e e eannns 48
[AENtiTY ENQINE SEIVICES .. ovniicii e e et e e e e e e e e e et e et e et e e aeannas 49
Identify CommOon COMPONENESiiiieiiieeiee et e e e e e e e e e et e e e e e e et e e et e e ean e e et e eaneeannas 50
8. Coding Tapestry APPIICALIONSuiveeieete e e e e e e e et e e e e aaas 51
APPHCATON ENGINE ..ottt ettt e et e e 51
RV AL 1 40 o] 1= o SO SPUPPPPPPIN 51
OPEratiNG SEAEEIESS ... eeeeeeie et ettt e e e e et e et e et e e e e e et a et e eaaaeees 51
Enterprise JaVaBeans SUPPONTieui ittt ettt e e e e e et aea e 52
0 Lo o= PP 52
9. DeSIgNING NEW COMPONENESuveeieeeteeeiereeeieesat e eet e eet e eean e eeneeat e eean e eanaeean e eennaeeanaeeanaeeanerennns 53
ChooSING @DBSE CIESS ... 53
Parameters and BiNINGScooouiiiiiiii e 53
Persistent COMPONENT SEAEEuiitiiit et e e e e e et e e et e et e e et e e eanaaeanans 55
COMPONENE ASSELS ...ttt ettt eea et e e et et e et e en e e et e e eeans 55
O =0 1= 0 VA= 00 BN = - o 1 o P 57
BT 2700 1Yo 0 10T 1= o A 58
Script Specifications and SCript COMPONENESuiiiiiiieieii et eeaans 59
11, The TaPESIIY INSPECTONeiite ettt ettt ettt e et e e et et e e et et e e e e ebe e e e eebeaaeeees 60
SPECITICALION VIBW ..ttt ettt e et et e et e e et e e et e e eanaaeees 60
TEMPIELE VIBW ..ottt et et et et e et e e et e ean e eaes 60
(0] 0= =SV T T PP 61
10 T T =T PP 62
(oo o] aTo IV AT PSPPI 63
AL TAPESIY JAR TIIES .o 65
B. Tapestry SPeCifiCalion DTSttt et e e et e et e et e a e e e e e e eeanns 66
<APPl i Cati ON> EOMENT ... 66
SDEANS EBIMENT ...t 67
<DI NI NG> BEMENT ..o 68
<CONT I QUI B3 BlBMENT oo e e e e e e e e e e e ees 68
<CONMPONENT > EIEIMENT ..ottt ettt ettt e et e e e et e e e era e eeenans 69
<COMPONENt - @l 1 @S> ElEMENT ... e 70
<conponent - speci ficati ON> @eMENtcooouiiiiiiii e 70
<CONt EXE - @SSO > EEMENT L..iiiiiii et 71
<AESCIiPti ON> EOMENT ..o e e e e 72
<EXE BNST ON> BlEMENT .o e e e e e aes 72
<external - aSSet > ElemMENt ... e 73
<field-bi Ndi NO> @EMENL ... e 74
<inherited-bindi Ng>element ... 74
S I o 1= Y= 1= 4= o | 75
<library-specificati on>eementc.cccooiiiiiiiiiiiii e 75
SPAGE > EIEIMENL ooeeiii e ettt et eaans 75
<page- speci ficati ON> EEeMENT ... 76
<PAr @IMBL €5 > EBlEIMENT ..o e et aas 76
SPrivat @-aSSet > EOIMENLoouiiii e 78
o] o] o LT g A= = 12T~ 0| S 78
<reserved- paramet €5 > @eMENtc..iiviiiiii e 79
ST Y B o = D= = 0o | 79
<Sel - ProPErtY> EOMENE oo e 80
<set-String-property>eement ... 80
<stati C-bi Ndi NG> EEMENT ... 80
<String-hi Ndi NG> ElEMENT ..o 8l
C. Tapestry Script SPeCIfiCation DTDoviiiiiiiicie e e e e e e e e e e e e e anas 82
SDOAY > EBIEIMENE ..o ettt 82
<FOr ACKh> ElEMENT .. e e 82

Tapestry Developer's Guide

T < L= 07 | PP 83
I = NOE S EOMENT L. 83
<INCI UAE-SCIi PUS EEMENT ..ttt 84
<initializati ON>EeMENt ... 84
<i NPUt - SYNMDOL > @EmMeNt ..o 84
<L BT > B OMENE ..t et aas 85
=Y o ST o A = 1= 111 0| 85
ST = = 01T | PP 86

Vi

List of Figures

T o = = oy o 29
4.2. Page LOadiNG SEOUENCE . ..uuiiieeeieeeit e et e et e e e e e s e e e e et e e e a e e e e e e e e ea e e et s e ean s eean e eeaneenenaee 29
4.3. PagE RENTEN SEQUENCEuuiiiiitie ettt ettt ettt ettt e e et e e et e b e e et et e e e e et e e e eaaa s 31
4.4, Page REWING SEOUENCE ... ettt ettt ettt e e e e et e e et e e e e et e e e enna s 32
4.5. Page DELAC SEOUEINCEuiiiieei ettt e et e e e e e et e e et e e et e e an e e ea e aean e 33
5.1, ApPliCatioNSErVIEE SEQUENCEieiiiieei et e e e e e e e et e e e e e et e e eenas 35
5.2, SEIVICES BNG GESIUMNES .. .eetiiieeiiii ettt e et et e et e e et e ettt e e ettt e e e e et r e e e et e e e e eabn e e eetan e eeennns 38
6.1, PagE SEIVICE SEOUENCEiiitieeit ettt et e et e e e e e e et e e e e et e e et e e et e e e an e e aa e e ean e e ean e aanneeennes 42
6.2. DIFECt SEIVICE SEOUEICEvuniiiiit ettt ettt ettt e ettt e et et e e e et e et et e e e eaan e eeenans 44
6.3, ACHON SEIVICE SEOUENCEueiiiii ettt ettt e et e et e e et e ettt e e e et e et e e e e e eta e e eenans 45
10.1. Body Component ReNdering SEQUENCEccuuiiitiiii et e e e e e e e e e eanas 58
11.1. INSPECLOr - SPECITICAION VIBWiieii e e e e e e e e e e e ees 60
11.2. INSPECLON - TEMPIBIE VIBW ..niei e e et e e e e e e e et e e e e e et e e et e e aaeeannas 60
11.3. INSPECLON - PrOPEriES VIBW ...vviiiiii et e e e e e e e e e e e e e et e e e e e e e eannas 61
11.4. INSPECLON - ENGINE VIBW .ottt e et e e et e e e eba e eees 62
11.5. INSPECLON - LOGGING VIBW ...veeeieii ettt ettt et ettt e e et e e e e et e e e eebe e eeees 63
B.1. <appl i cati on> AIDULEScouii e e 66
B.2. <appl i cat i ON> EIEMENLScouiiii e e e 67
B.3. <bean> AHDULESoieeiiie e 68
2 =T [Bl L 07 o £ PPN 68
B.5. <Bi Ndi N> AIDULES ...t e e et 68
B.6. CONF i QUI €3 ATITDULES ...iee e e e et e e e e eanas 69
B.7. <COMPONENT > ATITDULESieteeee ettt e e e e e e e eanas 69
B.8. <COMPONENTt > ElEMENLScoiiiiiii e e e 70
B.9. <conmponent - al i @as> AtDULEScouiiiiii e 70
B.10. <conponent - speci fi cati on> AttribUtESoveviiiiii i 70
B.11. <conponent - speci ficati on>Elements ... 71
B.12. <cont eXt - aSSet > AHIDULESoouiiie e 72
B.13. <AESCIi PLi ON> EOMENT ..ooeniei e e e e e e 72
B.14. <exXt €nsSi ON> AHDULES ... e 73
B.15. <conponent - speci fi cati on>ElemMentsccooouiiiiiiiiiii i 73
B.16. <ext ernal - asset > AIDULESiiiiiiii e 73
B.17.<fi el d- bi ndi N> AUIDULES ..o e 74
B.18. <i nheri t ed- bi ndi NG> AUMDULEScoouuiii e 74
B.19. <l i brary> AtDULES ... e 75
B.20.<l i brary-specificati ON>EIeMENtScoooiiiiii i 75
2 02 B o = Vo = BN 11] o1 (= 76
B.22. <page- speci ficati on> AtHDULESc..oiiiiiii 76
B.23. <page-speci ficati on>ElemMents ..o 76
B.24. <par amet er > AMIDULEScoouii e 77
B.25. <privat - aSSet > AHINDULEScouniiiii e 78
B.26. <Propert y> AIDULES ...ccviii e 78
B.27. <reserved- paramet er > AtrDULESoiiiiiiii 79
B.28. <S@Ir Vi Ce> ALDULES ...ovtiiiiiiii et e e e 79
B.29. <set - propert y> AtMDULEScooiuiii e 80
B.30. <set-string-property>AtibUIEScooeiiiiiii e 80
B.31. <stati c-bi Ndi N> ALHDULES ... e 80
B.32. <string-bi ndi NG> AHDULESoornii 8l
(O3 IR o o To |V = 1= 0= 82
C.2.<f Or €aCh> ALHDULESei it e e e eaans 82
(ORI I T g CY-Tod o Bl = 4= o £ P 83
O I B N 11] o[V 1= TP 83
O AR I Bl = 1= 017 0| E S PP PPP 83

Vii

Tapestry Developer's Guide

(ON SR I A o [} A AN 1111 o[| (=R 83
ORI B (o) Al = =0 1= 0| <RSP 83
C.8.<incl ude-SCri Pt > AHDULES ...ooouuiiiiii e e 84
CO<initializati ON> EIEBMENS ...uiiiiii ettt e e e e et e e aaeanas 84
C.10. <i nput - SYnmbol > AMHDULESo e 84
(O I =Y A AN 11] [0 1 (= PSP PRPRPR 85
(O b =Y Al 1= 111 | P 85
O T o I o) A == 47 85
(O Y Y N 1] U< TP 86

viii

List of Tables

5.1. Tapestry Pages

B.1. TAPESIY SPECITICAIIONS ... ceveeiiicei et e e e e e e et e e e e e e e e e an e e e eennas

List of Examples

2.1. JavaBeans getter MELNOMuiiiiiii e e e e e e e e e e e e e 8
2.2. JavaBeanS Setter MELNOAcooiiiiiii e 8
2.3. JavaBeans getter method (DOOIEAN)oiiiiiii i 9
2.4. Lazy evaulation Of JAVaBEaNS PIrOPEITYcceuuuiiirii ettt ettt e e e et e e e e e e aaa s 9
2.5. Synthesized JaVaBEaNS PrOPEITYiiuuiiiiii ettt et e e e et e e e eaa s 9
3.1. Connected Parameter - SPECITICAIONccuiiiiii e 13
3.2. Connected Parameter - JAVA COUEuvuuie ettt e e 13
4.1. HTML template for SOPPRIiNg Cartccouniiiiiiii e e e e e e e e e e e e eenaees 25
4.2. Shopping Cart SPeCifiCation (EXCEIPL)veeure it 26
4.3. Listener method fOr remove COMPONENLoiiertueiiiii et e e et e et e e e 27
5.1. Webh DeploymMeNnt DESCIIPIONietiiiteieeeie et e et e e e e e et e et e e et e e et e e e b e e aneeennns 34
10.1. Traditional JAVASCIIPL USBOEcvuuiie i i e e et e e e e e e e et e e e et e e e e e e e e eaeees 57

Chapter 1. Introduction

Tapestry is a comprehensive web application framework, written in Java.

Tapestry is not an application server. Tapestry is a framework designed to be used inside an application
server.

Tapestry isnot an application. Tapestry is aframework for creating web applications.
Tapestry isnot away of using JavaServer Pages. Tapestry is an alternative to using JavaServer Pages.

Tapestry is not a scripting environment. Tapestry uses a component object model, hot simple scripting,
to create highly dynamic, interactive web pages.

Tapestry is based on the Java Servlet APl version 2.2 It is compatible with JDK 1.2 and above. Tapestry
uses a sophisticated component model to divide aweb application into a hierarchy of components. Each
component has specific responsibilities for rendering web pages (that is, generating a portion of an
HTML page) and responding to HTML queries (such as clicking on alink, or submitting aform).

The Tapestry framework takes on virtually all of the responsibilities for managing application flow and
server-side client state. This allows developers to concentrate on the business and presentation aspects of
the application.

Tapestry reconceptualizes web application development in terms of objects, methods and properties in-
stead of URLs and query parameters.

Scripting vs. Components

Most leading web application frameworks are based on some form of scripting. These frameworks
(often bundled into a web or application server) include:

* Sun JavaServer Pages

e Microsoft Active Server Pages

* Allaire ColdFusion

« PHP

* WebMacro

* FreeMarker

* Vdocity

All of these systems are based on reading an HTML template file and performing some kind of pro-
cessing on it. The processing is identified by directives ... special tags in the HTML template that indic-
ate dynamic behavior.

Each framework has a scripting language. For JavaServer Pagesit is Javaitself. For ASPit is Visual Ba
sic. Most often, the directives are snippets of the scripting language inserted into the HTML.

For example, here's a snippet from a hypothetical JavaServer Page that displays part of a shopping cart.

http://java.sun.com/products/jsp/
http://www.macromedia.com/software/coldfusion/
http://www.php.net/
http://www.webmacro.org/
http://freemarker.sourceforge.net/
http://jakarta.apache.org/velocity/index.html

Introduction

<%
String userName = (String)session.getAttribute("userNane");
%>
<hl1>Contents of shopping cart for
<% user Nane %:</hl>

Most of the text is static HTML that is sent directly back to the client web browser. The emphasised text
identifies scripting code.

The first large block is used to extract the user name from the Ht t pSessi on, a sort of per-client
scratch pad (it is part of the Java Servlet API; other systems have some similar construct). The second
block is used to insert the value of an expression into the HTML. Here, the expression is smply the
value of the userName variable. It could be more complex, including the result of invoking a method on
aJavaobject.

Thiskind of example is often touted as showing how useful and powerful scripting solutions are. In fact,
it shows the very weaknesses of scripting.

First off, we have a good bit of Java code in an HTML file. Thisis a problem ... no HTML editor is go-
ing to understand the JavaServer Pages syntax, or be able to validate that the Java code in the scripting
sections is correct, or that it even compiles. Validation will be deferred until the page is viewed within
the application. Any errors in the page will be shown as runtime errors. Having Java code here is unnat-
ura ... Java code should be developed exclusively inside an IDE.

In areal JavaServer Pages application I've worked on, each JSP file was 30% - 50% Java. Very little of
the Java was simple presentation logic like <% user Nane %, most of it was larger blocks needed
to 'set up' the presentation logic. Another good chunk was concerned with looping through lists of res-
ults.

In an environment with separate creative and technical teams, nobody is very happy. The creative team
is unlikely to know JSP or Java syntax. The technical team will have difficulty "instrumenting” the
HTML files provided by creative team. Likewise, the two teams don't have a good common language to
describe their requirements for each page.

One design goal for Tapestry is minimal impact on the HTML. Many template-oriented systems add
several different directives for inserting values into the HTML, marking blocks as conditional, perform-
ing repetitions and other operations. Tapestry works quite differently; it allows existing tags to be
marked as dynamic in a completely unobtrusive way.

A Tapestry component isany HTML tag with aj wei d attribute ("jwc" stands for "Java Web Compon-
ent"). For comparison, an equivalent Tapestry template to the previous JSP example:

<h1>Cont ents of shopping cart for
John Doe: </ hl1>

This defines a component named i nsert User Nane on the page. To assist HTML development, a
sample value, "John Doe" isincluded, but this is automatically editted out when the HTML template
isused by the framework.

The tag simply indicated where the Tapestry component will go ... it doesn't identify any of its
behavior. That is provided el sewhere, in a component specification.

Introduction

A portion of the page's specification file defines what the i nser t User Nane component is and what it

does:

<conponent id="insertUserName" type="Ilnsert"> [
<bi ndi ng nane="val ue" expressi on="visit.userNane"/>
</ conponent >

O

O Thei d attribute gives the component a unique identifier, that matches against the HTML tem-
plate. Thet ype attribute is used to specify which kind of component is to be used.

O Bindingsidentify how the component gets the data it needs. In this example, thel nsert compon-
ent requires a binding for its val ue parameter, which is what will be inserted into the response
HTML page. This type of binding (there are others), extracts the userName property from the visit
object (a central, application-defined object used to store most server-side state in a Tapestry ap-

plication).

Tapestry really excels when it is doing something more complicated than simply producing output. For
example, let's assume that there's a checkout button that should only be enabled when the user has items

in their shopping cart.

In the JSP world, thiswould look something like:

<%
bool ean showLi nk;
String i mgeURL;
showLi nk = appl i cati onObj ect. get HasCheckout I t ens() ;
i f (showli nk)
I i mageURL = "/i mages/ Checkout.gif";
el se
i mgeURL = "/i mages/ Checkout - di sabl ed. gi f";

i f (showLink)

String |inkURL;

I i nkURL = response. encodeURL("/servl et/ checkout");
<a href="<% |inkURL %" >
<%} %
<i ng border=0 src="<% imgeURL %" alt="Checkout"><%

i f (showLi nk)
out.println("");

%

%

This assumes that appl i cati onObj ect exists to determine whether the user has entered any check-
out items. Presumably, this object was provided by a controlling servlet, or placed into the Ht t pSes-

si on.

The corresponding Tapestry HTML template is much simpler:

<a jwci d="checkout Li nk"><i ng jwci d="checkout Button" alt="Checkout"/>

A bit more goes into the page's specification :

../ComponentReference/Insert.html
../ComponentReference/Insert.html

Introduction

<conponent id="checkoutLi nk" type="PageLi nk"> O

<static-bi ndi ng nane="page" >Checkout </ st ati c- bi ndi ng>

<bi ndi ng name="di sabl ed" expression="visit.cartEnpty"/> O
</ conponent >

<conponent id="checkoutButton" type="Rollover"> [O

<bi ndi ng name="i mage" expressi on="assets.checkout"/>

<bi ndi ng nane="di sabl ed" expressi on="assets. checkout Di sabl ed"/ >
</ conponent >

<ext er nal - asset name="checkout" URL="/i nmages/ Checkout.gif"/> O

<ext er nal - asset nanme="checkout Di sabl ed" URL="/i nages/ Checkout - di sabl ed. gi f"/ >

0 Component checkout Li nk isaPageLi nk, acomponent that creates a link to another page in
the application. Tapestry takes care of generating the appropriate URL.

0 Thedi sabl ed parameter allows the link to be "turned off"; here it is turned off when the shop-
ping cart is empty.

0 A Roll over component inserts an image; it must be inside some kind of link component (such as
the PageLi nk) and is sensitive to whether the link is enabled or disabled; inserting a different im-
age when disabled. Not shown hereis the ability of the Rol | over component to generate dynam-
ic mouse-over effects as well.

0 Tapestry uses an abstraction, assets, to identify images, stylesheets and other resources. The
Rol | over component wants areference to an asset, not a URL.

The point of this example is that the JSP developer had to worry about character-by-character produc-
tion of HTML. Further, the ratio of Java codeto HTML is quickly getting out of hand.

By contrast, the Tapestry developer is concerned with the behavior of components and has an elegant
way of specifying that behavior dynamically.

Interaction

Let's continue with a portion of the JSP that would allow an item to be deleted from the shopping cart.
For simplicity, we'll assume that there's an object of class Li nel t emnamed i t emand that there's a
servlet used for making changes to the shopping cart.

<tr>
<td> <% item get Product Nane() % </td>
<td> <% itemgetQuantity() % </td>

<td> <% String URL = response. encodeURL("/servl et/ update-cart?acti on=renove"

"& temE" + itemgetld());
%
<a href="<% URL %" >Renobve </td>
</[tr>

This clearly shows that in a JSP application, the designer is responsible for "knitting together" the pages,
servlets and other elements at a very low level. By contrast, Tapestry takes care of nearly al these issues
automatically:

<tr>

../ComponentReference/PageLink.html
../ComponentReference/Rollover.html
../ComponentReference/PageLink.html
../ComponentReference/Rollover.html
../ComponentReference/PageLink.html
../ComponentReference/Rollover.html
../ComponentReference/Rollover.html

Introduction

<td> Sanpl e Product </td>
<td> 10 </td>
<td> <a jwci d="renove">Renove </td>

</tr>

Because of the component object model used by Tapestry, the framework knows exactly "where on the
page" the r emove component is. It uses this information to build an appropriate URL that references
ther enove component. If the user clicks the link, the framework will inform the component to perform
the desired action. Ther enbve component can then remove the item from the shopping cart.

In fact, under Tapestry, no user code ever has to either encode or decode a URL. This removes an entire
class of errors from a web application (those URLSs can be harder to assemble and parse than you might
think!)

Tapestry isn't merely building the URL to a servlet for you; the whole concept of 'servlets drops out of
the web application. Tapestry is building a URL that will invoke a method on a component.

Tapestry applications act like a'super-servlet'. There's only one servlet to configure and deploy. By con-
trast, even a simple JavaServer Pages application developed using Sun's Model 2 (where servlets
provide control logic and JSPs are used for presenting results) can easily have dozens of servlets.

Security

Developing applications using Tapestry provides some modest security benefits.

Tapestry applications are built on top of the Java Servlet API, and so inherits all the sercurity benefits of
servlets. Most security intrusions against CGI programs (such as those written in Perl or other scripting
languages) rely on sloppy code that evaluates portions of the URL in a system shell; this never happens
when using the Java Servlet API.

Because the URLs created by Tapestry for processing client interaction are more strongly structured
than the URLs in traditiona solutions, there are fewer weaknesses to exploit. Improperly formatted
URLs result in an exception response being presented to the user.

Where the Java Servlet APl suffersisin client identification, since a session identifier is stored on the
client either as an HTTP Cookie or encoded into each URL. Malicious software could acquire such an
identifier and "assume" the identity of a user who has recently logged into the application. Again, thisis
acommon limitation of servlet applicationsin general.

Finally, Tapestry applications have a single flow of control: al incoming requests flow through a few
specific methods of particular classes. This makes it easier to add additional security measures that are
specific to the application.

Web Applications

Tapestry has a very strong sense of what an application is, derived from an XML specification file. This
file identifies and gives names to all the pages in the application, and identifies certain other key classes
aswell. It aso gives a human-readable name to the entire application.

In other systems, there is no application per-se. There is some kind of 'home page' (or servlet), which is
the first page seen when a client connects to the web application. There are many pages, servlets (or
equivalent, in other frameworks) and interrelations between them. There is also some amount of state
stored on the server, such as the user name and a shopping cart (in a typical e-commerce application).
The sum total of these elements is the web application.

Introduction

Tapestry imposes asmall set of constraints on the developer, chiefly, that the application be organized in
terms of pages and components. These constraints are intended to be of minima impact to the de-
veloper, imposing an acceptible amount of structure. They create a common language that can be used
between members of ateam, and even between the technical and creative groups within ateam.

Under Tapestry, apageis also very well defined: It consists of a component specification, a correspond-
ing Java class, an HTML template, and a set of contained components.

By contrast, when using JavaServer Pages there are one or more servlets, embedded JavaBeans, a JSP
file and the Java class created from the JSP file. There isn't a standard naming scheme or other way of
cleanly identifying the various el ements.

Interactivity in Tapestry is component based. If a component is interactive, such as an image button with
a hyperlink (<a>), clicking on the link invokes a method on the component. All interactivity on a page
isimplemented by components on the page.

JavaServer Pages bases its interactivity on servlets. Interactive portions of a page must build URLs that
reference these servlets. The servlets use a variety of ad-hoc methods to identify what operation is to
take place when alink is clicked. Since there is no standard for any of this, different developers, even on
the same project, may take widely varying approaches to implementing similar constructs.

Because pages are components, they have a well-defined interface, which describes to both the frame-
work and the developer how the page fits into the overall application.

At the core of any Tapestry application are two objects. the engine and the visit. The engine is created
when the first request from a client arrives at the server. The engine is responsible for all the mundane
tasks in Tapestry, such as managing the request cycle. It is sort of a dispatcher, that handles the incom-
ing request and runs the process of responding to the request with anew HTML page.

The visit is a second object that contains application-specific data and logic. Its type is completely
defined by the application. In an e-commerce application, the visit might store a shopping cart and in-
formation about the user (once logged in).

Both the engine and the visit are stored persistently between request cycles, inside the Ht t pSessi on
object.

The engine also provides services. Services are the bridge between URLSs and components. Services are

used to generate the URL s used by hyperlinks and form submissions. They are also responsible for inter-
preting the same URLs when they are later triggered from the client web browser.

Features

The framework, based on the component object model, provides a significant number of other features,
including:

» Easy localization of applications

» Extremely robust error handling and reporting

» Highly re-usable components

» Automatic persistence of server-side client state between request cycles

» Powerful processing of HTML forms

» Strong support for load balancing and fail over

Introduction

» Zero code generation 1

» Easy deployment

» The Inspector, which allows devel opers to debug a running Tapestry application

The point of Tapestry is to free the web application developer from the most tedious tasks. In many
cases, the "raw plumbing" of a web application can be completely mechanized by the framework, leav-

ing the developer to deal with more interesting challenges, such as business and presentation logic.

As Tapestry continues to develop, new features will be added. On the drawing board are:

» Support for easy cross-browser DHTML
e XML /XHTML support
* Improved WAP/ WML support

* A real-time performance "Dashboard"

1That is, Tapestry templates and specifications are interpreted as is. Unlike JSPs, they are not translated into Java source code and compiled into
Java classes. This greatly simplifies debugging since no code is generated at runtime.

7

Chapter 2. JavaBeans and Properties

The Tapestry framework is based upon the use of JavaBeans and JavaBeans properties. This chapter isa
short review of these concepts. A more involved discussion is available as part of the Java Tutorial.

JavaBeans

The JavaBeans framework is a way of manipulating Java objects when their exact type is not known.
The ability to make objects work together, when their exact type is not known, is very powerful. It's an
example of the kind of flexibility availble in a highly dynamic language like Java that is not possible in
lower-level languages such as C++.

The JavaBeans framework is the basis for a number of component-based frameworks, including Javas
AWT and Swing GUI libraries, as well as Tapestry. The idea is that, by following a few naming rules
and coding conventions, it is possible to "plug into" a framework with new classes, classes not even
written yet when the framework is created. In Tapestry terms, this is used to alow the creation of new
Tapestry components.

Any Java object can act as a JavaBean; it just has to follow certain naming conventions (discussed in the
next section). In cases where a framework needs to create new instances of a class, such as when
Tapestry creates a new instance of a component, the Java class must implement a public, no arguments
constructor (it may implement additional constructors as well).

The Java Reflection API allows Tapestry to access the methods, attributes and constructors of aclass.

JavaBeans Properties

For Tapestry, the central concept for JavaBeans are properties. The JavaBeans framework allows
Tapestry to treat any object as a collection of named properties. Tapestry frequently reads, and occasion-
ally writes, values from or to these named properties.

A property is not the same as an attribute ... though, most often, each property is backed up by an attrib-
ute. To Tapestry, and the Reflection API, a property is a set of public methods on the object. Accessing
aproperty involves invoking one of these methods.

Example 2.1. JavaBeans getter method

public type get Name()
{

Example 2.2. JavaBeans setter method

public void set Name(type val ue)

{
}

http://java.sun.com/j2se/1.3/docs/api/java/beans/package-summary.html
http://java.sun.com/docs/books/tutorial/javabeans/index.html
http://java.sun.com/j2se/1.3/docs/api/java/lang/reflect/package-summary.html

JavaBeans and Properties

A property may be read-only or write-only (that is, it may implement just one of the two methods). The
t ype may be ascalar type (boolean, int, etc.) or any Java class.

Note the naming; the first letter of the property name is capitalized after get or set . JavaBeans proper-
ties are case sensitive with respect to the method names and the property names. A specia case exists
when the name is an acronyn; this is recognized by two or more upper-case letters in a row (after get or
set); in this case, the property name does not have the first |etter convert to lower-case.

Asaspecia case, a boolean property may use an aternate name for the getter method:

Example 2.3. JavaBeans getter method (boolean)

publ i c bool ean i sName()

{
}

Although the normal implementation is to get or set an instance variable, more complicated options are
possible. One pattern is lazy evaluation, where an expensive calculation is put off until the actual value
is needed, for example:

Example 2.4. Lazy evaulation of JavaBeans property

public List userNanes = null;

/**

* Returns a List of user names obtai ned fromthe database.
*

**/

public List getUserNanes()

if (userNanes == null)
user Nanmes = fet chUser NanesFr onDat abase() ;

return user Nanes;

Here, the first time the method is invoked, the expensive database fetch occurs. The value returned from
the database is then cached for later invocations.

Another common pattern is a synthesized property. Here, there is no real attribute at all, the value is al-
ways computed on the fly. A frequent use of thisisto avoid tripping over null pointers.

Example 2.5. Synthesized JavaBeans Property

JavaBeans and Properties

/**

* Returns the nanme of the conpany's account representative, if
* if the conmpany has one, or null otherw se.

*
**/

public String get Account RepNane()
Account Rep rep = conpany. get Account Rep() ;

if (rep == null)
return null;

return rep.get Nane();
}

This example creates a synthetic property, account RepNane.

Property Paths

The JavaBeans framework provides basic named properties for JavaBean objects. Tapestry extends this
from simple properties to property paths.

A property path is a series of property names, separated by periods. When reading a property path, each
property isread in series.

In the example from the introduction, the property path vi si t . user Nane was referenced. This path
means that thevi si t property of the start object (a Tapestry page) should be accessed, then the user -
Nanme property of the visit object should be accessed. This is approximately the same as Java code
getVisit().getUserNane() (exceptthat property accessis not typesafe).

In some cases, property paths are used to change a value, instead of reading it. When this occurs, all
properties but the last a read; only the last property is written. In other words, updating vi s-
i t.user Name would be similar to the JavaCode get Vi si t () . set User Nane(val ue) .

Property paths can be of any length; however, they are just as susceptable to Nul | Poi nt er Excep-
t i onsas any other JavaCode. Care must be taken that none of the properties in a property path, except
the final one, return null. This can often be accomplished using synthesized properties.

Object Graph Navigation Library

Beyond even simple property paths are the powerful Object Graph Navigation Library (OGNL) expres-
sions. OGNL expressions are modeled after Java expressions; they can invoke methods, perform com-
parisons, do arithmetic ... even build collections on the fly.

OGNL is a separate framework from Tapestry; further details about it are avalable at ht-
tp://www.ognl.org.

10

http://www.ognl.org
http://www.ognl.org

Chapter 3. Tapestry Components

Tapestry components are "black boxes' that are involved with both rendering HTML responses and re-
sponding to HTTP requests.

A Tapestry component is defined by its specification. The specification is an XML file that defines the
type of the component, it parameters, the template used by the component, any components embedded
within it and how they are 'wired up', and (less often) any assets used by the component.

At runtime, the specification is used to identify and instantiate a class for the component. When the page
containing the component is rendered, the component will access its HTML template to find the static
HTML and embedded components it will render.

Parameters and Bindings

Tapestry components are designed to work with each other, within the context of a page and application.
The process of rendering a pageis largely about pulling information from a source into a component and
doing something with it.

For example, on a welcome page, a component might get the user Narre property from thevi si t ob-
ject and insert it into the HTML response.

Each component has a specific set of parameters. Parameters have a name, a type and may be required
or optional.

To developers experienced with Java GUIs, it may appear that Tapestry component parameters are the
same as JavaBeans properties. This is not completely true. JavaBeans properties are set-and-forget; the
designer sets avalue for the property using a visual editor and the value is saved with the bean until it is
used at runtime.

Parameters define the type of value needed, but not the actual value. This value is provided by a specia
object called abinding. The binding is a bridge between the component and the parameter value, expos-
ing that value to the component asit is needed. The reason for all thisisto allow pages, and the compon-
ents within them, to be shared by many concurrent sessions ... a mgjor facet in Tapestry's strategy for
maintaining application scalability.

When a component needs the value of one of its parameters, it must obtain the correct binding, an in-
stance of interface | Bi ndi ng, and invoke methods on the binding to get the value from the binding.
Additional methods are used with output parameters to update the binding property.

In most cases, discussed in the next section, Tapestry can hide the bindings from the developer. In ef-
fect, it automates the process of obtaining the binding, obtaining the value from it, and assigning it to a
JavaBean property of the component.

There are two types of bindings: static and dynamic. Static bindings are read-only; the value for the
binding is specified in the component specification.

Dynamic bindings are more prevalent and useful. A dynamic binding uses a JavaBeans property hame to
retrieve the value when needed by the component. The source of this datais a property of some compon-
ent.

In fact, dynamic bindings use property paths, allowing a binding to ‘crawl!’ deeply through an object
graph to access the value it needs. This frees the components from relying totally on the properties of
their container, instead they are free to access properties of more distant objects.

11

../api/org/apache/tapestry/IBinding.html

Tapestry Components

Connected Parameters

In most cases, a developer is not interested in bindings; an easier model for developers is one in which
Tapestry uses the parameters and bindings to set properties of the component automatically. Starting in
release 2.1, Tapestry includes this behavior, with some constraints and limitations.

Part of the <par anet er > specification for a parameter is the direction, which can be one of the fol-
lowing values:

in
Input parameter; the value is drawn from the binding (if bound) and applied to the corresponding component
property just before rendering the component.

form
A parameter which matches the semantics of a form component. The parameter is treated like an i n parameter
when the page is rendering.

When the form containing the component is submitted, the connected property is read (after the component
renders), and the value applied to the parameter.

custom
Tapestry does not try to connect the parameter with any property; the component is responsible for accessing
the binding and retrieving or setting values.

This type must be used for any kind of output parameter, or for an input parameter where the property may be
accessed other than during the rendering of the component.

Why aren't output parameters connectable?

The problem is the timing of output parameters. Sometimes a parameter is only an output
parameter when the containing form is submitted (for example, any of the form related
components). Sometimes a parameter is output many times (for example, For each) while
the component renders.

The latter case may always be handled as custom; the former case may be handled in the
future.

Defining a parameter as direction i n causes Tapestry to connect the parameter to the corresponding
property of the component. The parameter specification must identify the Java type of the property.
Properties must be read/write (they must have both getter and setter methods).

Tapestry will set properties from parameters just before rendering the component. After the component
renders, the parameters are cleared; they are returned to inital values. Tapestry reads these initial values
just before it sets the properties the first time. This makes it very easy to set defaults for optional para-
meters: just provide a default value for the correspoinding instance variable.

If the property is connected to an invariant binding (a static or field binding), then the property is set just
once, and never cleared.

There are times when the parameter name can't be used as the property name. For example, the Pa-
geLi nk component has a page parameter, the name of the page to link to. However, all components
already have a page property, the | Page that ultimately contains them. The specification for the Pa-
geLi nk component connects the page parameter to a property namedt ar get Page instead.

Defining a connected parameter as required means that the parameter must be bound and the binding

12

../ComponentReference/Foreach.html
../ComponentReference/PageLink.html
../ComponentReference/PageLink.html
../api/org/apache/tapestry/IPage.html
../ComponentReference/PageLink.html
../ComponentReference/PageLink.html

Tapestry Components

must provide a non-null value. A runtime exception is thrown when a required parameter's binding
yieldsanull value.

The following examples show how to declare and use a parameter:

Example 3.1. Connected Parameter - Specification

<specification ...>

<par anet er nanme="col or" direction="in" java-type="java.aw.Col or"/>

Example 3.2. Connected Parameter - Java Code

public class Col or Conponent extends Abstract Conponent
private Color col or = Col or. RED;
publ i c Col or get Col or ()
{

return col or;

}
public void set Col or (Col or col or)

—~

this.color = color;

—

prot ected voi d render Conponent (| Mar kupWiter witer, |RequestCycle cycle)
t hrows Request Cycl eExcepti on

—~

witer.begin("font");
witer.attribute("color", "RequestContext;.encodeCol or(color);

render W apped(witer, cycle);

witer.end();

}

In this example, the component writes its content inside a <f ont > element, with the HTML color at-
tribute set from the col or parameter. Request Cont ext includes a static convienience method for
converting from a Col or object to an encoded color that will be meaningful to aweb browser.

The parameter is optional and defaultsto red if not specified (that is, if the parameter is not bound).

At runtime, Tapestry will invoke set Col or () first (if thecol or parameter is bound). It will then in-

13

../api/org/apache/tapestry/AbstractComponent.html
../api/org/apache/tapestry/IMarkupWriter.html
../api/org/apache/tapestry/IRequestCycle.html
../api/org/apache/tapestry/RequestContext.html

Tapestry Components

voke r ender Conrponent () . Finaly (even if r ender Conponent () throws an exception) it will
invoke set Col or () again, to restore it back to the default value, Col or . RED.

This code includes a defect: because the parameter is optional, there is nothing to prevent it from being
bound to null.

Formal vs. Informal Parameters

Tapestry components have two types of parameters. formal and informal.

Formal parameters are parameters defined in the component specification. Each formal parameter has a
specific (case sensitive) name and may be required or optional .

In many cases, there is a one-to-one mapping between a Tapestry component and a specific HTML tag.
For example, Body and <body>, For mand <f or n®, etc. In other cases, a Tapestry component pro-
duces a known single HTML tag. For example, Act i onLi nk, Di r ect Li nk, PageLi nk and Ser -
vi ceLi nk al produce an <a> tag.

To support truly rich interfaces, it is often necessary to specify additional attributes of the HTML tags;
usually this means setting the cl ass of atag so as to get visual properties from a stylesheet. In other
cases, display attributes may be specified inline (this is often the case with attributes related to display
width and height, since CSS support for these properties are inconsistent between the major HTML 4.0
browsers).

In theory, these components could define additional formal parameters for each possible HTML attribute
... but there are a huge number of possible attributes, many of which are specific to a particular browser.

Instead, Tapestry has the concept of an informal parameter. Thisis an "additional" parameter, not spe-
cified in the component's specification. In most cases, where informal parameters are allowed, they are
added as additional HTML attributes (there are a few special exceptions, such asthe Scri pt compon-
ent).

Informal parameters do have some limitations. Informal parameters that conflict with the names of any
formal parameters, or with any of the HTML attributes generated directly by the component, are silently
ommitted. The comparison is case-insensitve. Thus, for a Di r ect Li nk component, you can not
changethe hr ef attribute, even if you supply aHr ef (or other variation) informal parameter.

Not all Tapestry components even allow informal parameters; this is explicitly stated in the component
specification.

Informal Parametersthat are Assets
1y
Tapestry includes a special case when an informal parameter is actually an asset. The URL

for the asset is determined and that is the value supplied for the attribute.

Embedded Components

Under Tapestry, it is common to define new components by combining existing components. The exist-
ing components are embedded in the containing component. This is always true at the top level; Pages,
which are still Tapestry components, always embed other Tapestry components.

Each embedded component has an i d (an identifying string) that must be unique within the containing
component. Every non-page component is embedded inside some other component forming a hierarchy
that can get quite deep (in real Tapestry applications, some pages have components nested three to five
levels deep).

14

../ComponentReference/Body.html
../ComponentReference/Form.html
../ComponentReference/ActionLink.html
../ComponentReference/DirectLink.html
../ComponentReference/PageLink.html
../ComponentReference/ServiceLink.html
../ComponentReference/ServiceLink.html
../ComponentReference/Script.html
../ComponentReference/DirectLink.html

Tapestry Components

In some cases, a component will be referenced by itsid path. Thisis a series of component ids separated
by periods, representing a path from the page to a specific component. The same notation as a property
path is used, but the information being represented is quite different.

For example, theid path bor der . navbar . homeLi nk represents the component named honeLi nk,
embedded inside a component named navbar , embedded inside a component named bor der , embed-
ded inside some page.

Tapestry components are "black boxes'. They have a set of parameters that may be bound, but their in-
ternals, how they are implemented, are not revealed.

Primitive components may not embed other components, or even have atemplate. Nearly all the built-in
components are primitive; they are building blocks for constructing more complex components.

Alternately, a component may be implemented using a template and embedded components. In either
case, the names, types or very existence of embedded components is private, hidden inside the contain-
ing component's "black box".

HTML Templates

Nearly al Tapestry components combine static HTML 1 from a template with additional dynamic con-
tent (some few components are just dynamic content). Often, a Tapestry component embeds other
Tapestry components. These inner components are referenced in the containing component's templ ate.

One of the features of Tapestry is invisible instrumentation. In most web application frameworks, con-
verting astatic HTML page into a usable template is a destructive process. the addition of new tags, dir-
ectives or even Java code to the template means that it will no longer preview properly in aWY SIWY G
editor.

Tapestry templates are instrumented using anew HTML attribute, j wei d, to any existing element. Ele-
ments with such attributes are recognized by Tapestry as being dynamic, and driven by a Tapestry com-
ponent, but a WY SIWY G editor will simply ignore them. Once a template is instrumented, it may be
worked on by both the HTML producer and the Java devel oper.

Identifying a Tapestry component within an HTML template is accomplished by adding aj wci d attrib-

uteto atag.

<any jwci d="conponent id" ... > body </any>
or

<any jwci d="conponent id" ... />

Most often, the HTML element chosen is , though (in fact) Tapestry completely ignores the ele-
ment chosen by the devel oper, except to make sure the open and close tags balance.

The parser used by Tapestry is relatively forgiving about case and white space. Also, the component id
(and any other attributes) can be enclosed in double quotes (as above), single quotes, or be left unquoted.

You are free to specify additional attributes. These attributes will become informal parameters for the

1 The current releases of Tapestry is specifically oriented around HTML. Some support for non-HTML languages, such as XML, XHTML or
WML is aready present and will be expanded in the future.

15

Tapestry Components

Tapestry component.
The start and end tags for Tapestry components must balance properly. This includes cases where the

end tag is normally ommitted, such as <i nput > elements. Either a closing tag must be supplied, or the
XML-style syntax for an empty element must be used (that is, a slash just before the end of the tag).

Localizing sections of a template

Tapestry includes an additional template feature to assist with localization of a web application. By spe-
cifying a element with a specia attribute, key, Tapestry will replace the entire tag
with alocalized string for the component.

This construct takes one of two forms:

 ...
or

If only the key attribute is specified, then the is simply replaced with the localized string.
However, if any additiona attributes are specified for the tag beyond key, then the
tag will be part of the rendered HTML, with the specified attributes.

The upshot of thisis that sections of the HTML template can be invisibly localized simply by wrapping
the text to be replaced inside a tag. The wrapped text exists, once more, as sample text to be
displayed in aWY SIWY G editor.

Components with Bodies

In Tapestry, individual components may have their own HTML templates. This is a very powerful
concept ... it allows powerful and useful components to be created with very little code. By contrast, ac-
complishing the same using JSP tags requires either that all the HTML be output from the JSP tag dir-
ectly, or that the JSP tag use some additional framework, such as Velocity, to enable the use of a tem-
plate. In either case the JSP tag author will need to divide the code or template into two pieces (before
the body and after the body). Tapestry allows components to simply have a single template, with a
marker for where the body is placed.

During the rendering of a page, Tapestry knits together the templates of the page and al the nested com-
ponents to create the HTML response sent back to the client web browser.

Cont ai ner content [

 [
Body content 0O

</ span>

More cont ai ner content 0O

16

Tapestry Components

This portion of the container content is rendered first.
The component is then rendered. It will render, possibly using its own template.
The component controls if, when and how often the body content from its container is rendered.

[|

Body content can be a mix of static HTML and additional components. These components are
wrapped by the component, but are embedded in the component's container.
O After the component finishes rendering, the remaining content from the container is rendered.

The body listed above can be either static HTML or other Tapestry components or both. Elementsin the
body of a component are wrapped by the containing component. The containing component controls the
rendering of the elements it wrapsin its body. For example, the Condi t i onal component may decide
not to render its body and the For each component may render its body multiple times.

Not all Tapestry components should have a body. For example, the Text Fi el d component creates an
<i nput type=t ext> form element and it makes no sense for it to contain anything else. Whether a
component allows a body (and wrap other elements), or whether it discardsiit, is defined in the compon-
ent's specification.

Tapestry includes a special component, Render Body, which is used to render the body content from a
component’s container. It makes it easy to create components that wrap other components.

Tapestry and HTML Production

Tapestry is design to work in a large-scale environment, that typically features two seperate teams. a
"creative" team that produces HTML and a "technical" team that produces Tapestry pages, components
and Java code.

The division of skills is such that the creative team has virtualy no knowledge of Java and a minimal
understanding of Tapestry, and the technical team has a limited understanding of HTML (and tend to be
color blind).

The typical workflow is that the technical team implements the application, using very minimal HTML
... that is, minimal attention to layout, font size, colors, etc. Just enough to be sure that the functionality
of the application is there.

Meanwhile, the creative team is producing HTML pages of what the finished application will look like.
These pages are like snapshots of the HTML produced by the running application.

Integration is the process of merging these two views of the application together. Primarily, this in-
volves marking up tags within the HTML page with j wei d attributes, to indicate to Tapestry which
portions of the page are dynamic. In this way, the page can be used as a Tapestry HTML template.
These changes are designed to be invisibleto aWY SIWY G HTML editor.

Tapestry includes a number of additional features to allow the HTML producers to continue working on
HTML templates, even after their initial efforts have been integrated with the Java developer's code.

Implicitly removed bodies

In many cases, a component doesn't allow a body, but one may be present in the HTML template. As
usual, this is declared in the component's specification. Tapestry considers that body to be a sample
value, one which exists to allow the HTML producer to verify the layout of the page using a WY Sl-
WY G editor (rather than having to run the entire application). Tapestry simply edits out the body at
runtime.

For example, an HTML producer may create an HTML template that includes a table cell to display the
user's name. The producer includes a sample value so that the cell isn't empty (when previewing the
HTML layout).

17

../ComponentReference/Conditional.html
../ComponentReference/Foreach.html
../ComponentReference/TextField.html
../ComponentReference/RenderBody.html

Tapestry Components

<td>John Doe</t d>

The | nsert component doesn't allow a body, so Tapestry edits out the content of the tag
from the HTML template. The fact that a was used to represent the | nsert component in the
HTML template isirrelevant to Tapestry; any tag could have been used, Tapestry just cares that the start
and end tags balance.

At runtime, Tapestry will combine the HTML template and the | nser t component to produce the final
HTML:

<td>Frank N. Furter</td>

This editting out isn't limited to simple text; any HTML inside the body is removed. However, none of
that content may be dynamic ... the presence of aj wei d attribute will cause a parsing exception.

Explicitly removed bodies

Another feature related to production and integration is the ability to remove sections of the HTML tem-
plate. Producers often include some optional portions on the page. The canonical example of thisis a
page that shows a table of results; the HTML producer will usually include extra rows to demonstrate
the look and layout of afully populated page.

The first row will be wrapped by a For each and otherwise changed to include dynamic links and out-
put, but what about the other rows?

To handle this case, Tapestry recognizes a special j wei d attribute value: $r enove$. Using this spe-
cial id causes Tapestry to edit out the tag and al of its contents. Thus, each additional <t r > in the table
should specify the value $r enove$ for attributej wei d.

<t abl e>
<tr jwcid="foreach">
<t d>John Doe</ span></td>
/<td>42</ span></t d>
</tr>
<tr jwcid="$renove$">
<td>Frank N. Furter</td>
<td>47</td>
</[tr>
<tr jwcid="$renove$">
<t d>Bob Doyl e</t d>
<t d>24</t d>
</tr>
</ tabl e>

Limiting template content

In a typical Tapestry application, some form of Border component provides a significant portion of
every page. This typically includes the outermost <ht m >, <head> and <body> tags, as well as

18

../ComponentReference/Insert.html
../ComponentReference/Insert.html
../ComponentReference/Insert.html
../ComponentReference/Foreach.html

Tapestry Components

<t abl e>sused to control layout.

In the static HTML pages from the creative team, thisis not directly visible ... they must include all the
content normally generated by the Border component in order to see what the HTML page actually
looks like.

By default, the entire HTML template is the content for the page. This causes a problem, even after a
 is added, to represent the Border component ... much of the HTML is duplicated, once from
the static HTML, then dynamically from the Border component.

To eliminate this problem, Tapestry has a second specia j wei d attribute: $cont ent $. Using this spe-
cial id causes Tapestry to limit its view of the HTML template to just the content inside the tag. Any-
thing outside the defined content is completely ignored.

Limits
Idedlly, the HTML pages created by the HTML producers would be used as is as the HTML templates.

Changes made for integration, the adding of j wei d attributes and such, would be copied back into the
HTML pages.

Given the use of the $r enpove$ and $cont ent $ j wei d's, thisis practical to a point. Once the applic-
ation starts using a number of re-usable components, there isn't a good way to perform the integration
short of cutting and replacing some of the HTML page content to form the HTML template.

Localization

Tapestry has built in support for localization, designed to be easy to use. This localization support is
defined in terms of transforming the user interface into a format appropriate the the locale of the user.
This primarily takes the form of localized text (translated into the end-user's language), but can also af-
fect other aspects of look and feel including colors, images and layout.

Tapestry has two different methods for supporting localization; developers are free to mix and match
solutions according to their own preferences.

Each client connecting to the application will select a particular Local e. When a page for the applica-
tion is created, the localeis used to select the correct localized resources. Locales are defined by the 1ISO
(International Standards Organization). A locale consists of a language code (such as 'en' for English,
'de’ for German or 'fr' for French) and a country code (such as 'AU' for Australia, 'BE' for Belguim, or
'GB' for United Kingdom).

A client's initial locale is determined by analyzing HTTP headers provided with the initial request. An
application may override this default, which records a client-side cookie identifyng the desired locale.
An example of thisisincluded in the Tapestry Workbench demonstration.

Localization with Strings

Each individual component may have a set of localized strings. Remember that pages are just a specific
kind of component. This set is built, much like the properties of a Resour ceBundl e, from one or
more . properti es files. These files are located on the classpath, in the same directory as the com-
ponent specification (the . j wec file).

The search for strings is much the same as with Resour ceBundl e, except that only . properti es
files are considered (Resour ceBundl e aso looks for classes).

Example: for a component / com skunkwor x/ skunkapp/ Bor der . j wc and a locale of fr_BE
would be:

19

Tapestry Components

e /com skunkwor x/ skunkapp/ Bor der _fr _BE. properties

» /com skunkwor x/ skunkapp/ Bor der _fr. properties

» [/ com skunkwor x/ skunkapp/ Bor der . properties

Searching for individual keys works just as with Resour ceBundl e, the search starts in the most spe-
cificfile(Bor der _f r _BE. properti es) and continues downward if not found.

Components can gain access to their container's localized strings via the <st r i ng- bi ndi ng> ele-
ment in the component specification.

Localization with Templates

Tapestry alows multiple versions of HTML templates and assets (described in a later section) to be de-
ployed with the application.

The base template name is derived from the specification name, by changing the j we extension to
ht M . For example, component / com skunkwor x/ skunkapp/ Bor der . j wc will have a base
template name of / com skunkwor x/ skunkapp/ Bor der . ht nl . This resource name is used as
the basis of a search that includes the locale. Various suffixes are inserted just before the ".html" exten-
sion.

A French speaking Belgian visitor would provoke the following search:

* /com skunkwor x/ skunkapp/ Bor der _fr_BE. ht ml
e [/ com skunkwor x/ skunkapp/ Border _fr. htmn
* /com skunkwor x/ skunkapp/ Bor der. ht m

Note
This form of localization actually predates the alternate form, using localized strings. Loc-

alizing the strings seperately from the rest of the HTML template is generally a better and
easier way. Localization of templates will, in the future, be used primarily when changing
the layout of the template ... for example, to provide aright-to-left orientation in a Hebrew
localization.

Assets

Assets are images (GIF, JPEG, etc.), movies, sounds or other collateral associated with a web applica
tion. Assets comein three flavors. external, context and private.

External assetslive at an arbitrary URL. Context assets use a URL within the servlet context hosting the
Tapestry application; these assets are deployed within the same Web Application Archive (WAR) as the
application.

Private assets come from the Java classpath and are resources not normally visible to the web server.
Tapestry uses the assets concept to address two areas: localization and depl oyment.

For localization: internal and private assets are localized, just like HTML templates. That is, the path

20

Tapestry Components

name provided is used as the basis for a search that takes into account the desired locale. External assets
can't belocalized in this way.

Private assets allow for easy deployment because the assets are packaged with the HTML templates and
Java code of the application, inside a Java Archive (JAR) file.

Private assets support re-usability; a re-usable component may be packaged with supporting assets
(typicaly, image files) and used in any Tapestry application without change, and without having to loc-
ate, extract or otherwise fiddle with those assets.

The Tapestry framework provides two ways of exposing the assets to the client web browser.

First, it provides a service that will access the asset dynamically. The URL encodes the application ser-
vlet and the resource to download, and Tapestry framework code will pump the bytes down to the client
web browser. Thisisthe default behavior (and is most useful during devel opment).

The second method involves copying the asset out to a directory visible to the web server, and creating a
URL for it inits final location. This requires some extra configuration of the application. This method
also has some implications when deploying new versions of the web application. These are addressed
later in this document.

Helper Beans

Thereis a second form of aggregation allowed with Tapestry components. The first way, covered previ-
oudly, is to use embedded components to extend the functionality of the outer component. In some
cases, useful behavior can be isolated, not into an additional component, but into a simple JavaBean.

These additional beans, called helper beans, are defined in the component specification, in the <bean>
element. Each bean has a unique name, a class to instantiate, and a lifecycle (which controls how long
the component keeps a reference to the bean). The specification allows properties of the bean to be set as
well, using the <set - property> and <set - st ri ng- pr opert y> elements. Helper beans are ac-
cessed through the beans property of the component.

Beans are created as needed, they may then be cached for future use according to their declared life-
cycle. The default lifecycle is r equest , meaning that the same bean will be returned until the end of
the current request cycle.

An dternate lifecycle, page, means that once the bean is instantiated, it will continue to be available for
the lifetime of the page containing it. Remember that helper beans should never contain any client-
specific state, since a page will be used by multiple sessions and clients.

The last available lifecycle, none, indicates that the bean is not cached at all, and will be created fresh
on each property access.

Tapestry includes a handful of useful helper beans. Def aul t is used to provide default values for op-
tional parameters. Val i dat i onDel egat e and several implementions of | Val i dat or used with
Val i dFi el d, it allows simple handling of validation and presentating validation errors. Even(Qdd is
used by the Tapestry Inspector; it generates a stream of values alternating between "even" and "odd";
this is combined with cascading stylesheets to make the rows alternate between white and grey back-
grounds.

21

../api/org/apache/tapestry/bean/Default.html
../api/org/apache/tapestry/valid/ValidationDelegate.html
../api/org/apache/tapestry/valid/IValidator.html
../ComponentReference/ValidField.html
../api/org/apache/tapestry/bean/EvenOdd.html

Chapter 4. Tapestry Pages

Pages are specialized versions of components. As components, they have a specification, embedded
components, assets and an HTML template.

Pages do not have parameters, because they are the outermost component in the component hierarchy.

All components, however deep their nesting, have a page property that points back to the page they are
ultimately embedded within. Pages have an engine property that points to the engine they are currently
attached to.

Pages participate in a pooling mechanism, so that a single instance of a page component can be used by
multiple sessions of the same web application. Even when alarge number of client sessions are active, it
is rare for more than a handful to be actively processing requests in the application server. This pooling
mechanism minimizes the number of instances of a page that must exist concurrently on the server.
There are some implications to this design that are discussed in the following sections.

Pages may have persistent state, properties specific to a particular user that persist between request
cycles. These properties live only as long as the Ht t pSessi on. There is some complexity here, be-
cause the page state is entirely seperate from any instance of the page. Remember that on subsequent re-
quests, a different page from the page pool may be used to service the request ... in fact, in a clustering
environment, the request may be serviced by an entirely different server. Tapestry efficiently and trans-
parently hides these details;, when any portion of an application requests a page, it receives an instance
of the page with all persistent page properties set the the values previously stored for the user.

In fact, any component may have persistent state, and use the page as means for recording that state.

The engine is a session persistent object. The implementation of this varies from application server to
application server, but the basic idea is that the Ht t pSessi on is serialized after each reguest and
stored in afile or database. It may then be removed from memory. When a subsequent request for the
same session arrives, it isrestored from the persistent storage.

In aclustering server application, consequtive regquests for the same session may be serviced by different
servers within the cluster. Serializing and deserializing the Ht t pSessi on is the mechanism by which
the servers are kept synchronized. Persistent page properties are stored as part of the engine, and so they
continue to be available, even after the engine has moved from one server to another.

The visit object is a property of the engine object, so it is serialized and de-serialized with the engine.

Pages are not session persistent. They exist only within the memory of the Java VM in which they are
first created. Pages and components don't need to implement the j ava. i 0. Seri al i zabl e inter-
face; they will never be serialized.

The application engine can aways instantiate a new page instance and restore its previously recorded
state (the recorded state information is serialized with the engine).

Page State

Pages, and the components on them, have state. State is considered the set of values for the properties of
the page.

In Tapestry, the lifespan of each property is very important. There are three lifespans:

» Persistent. Changes the property are recorded and persist between request cycles. Persistent proper-
ties are restored when the page is next loaded. Persistent properties are specific to an individual user.

22

Tapestry Pages

» Transient. The property is set before the page is rendered and will be reset (to its default value) at the
end of the current request cycle.

« Dynamic. The property changes even while the page is rendered, but (like transient) the property is
reset at the end of the current request cycle.

Persistent properties are things like the user's name, the product being displayed in an e-commerce ap-
plication, etc. Transient properties are more commonly things needed just once, such as an error mes-
sage. Dynamic properties are intimately tied to the rendering process ... for example, to display alist of
itemsin an order, it may be necessary to have a dynamic property take the value of each lineitem in se-
guence, as part of aloop.

Persistent Page State

The Tapestry framework is responsible for tracking changes to page state during the request cycle, and
storing that state between request cycles. Ultimately, thisis the responsiblility of the application engine.
This is accomplished through page recorder objects. As a page's persistent state changes, it notifies its
page recorder, providing the name of the property and the new value.

Thisinformation is stored persistently between request cycles. In alater request cycle, the page recorder
combines this information with a page instance to rollback the state of the page.

Pages are blind as to how their state is stored. The basic implementation of Tapestry simply stores the
page state information in memory (and serializes it with the engine, in the Ht t pSessi on), but future
options may include storing the data in flat files, relational databases or even as cookies in the client
browser.

Some minor burden is placed on the developer to support persistent state. The mutator method of every
persistent property must include aline of code that notifies the observer of the change.

For example, consider a page that has a persistent property for storing an email address. It would imple-
ment the normal accessor and mutator methods:

private String email Address;
public String get Email Address()
{

return emai |l Addr ess;

public void setEmail Address(String val ue)
emai | Address = val ue;

fireCoservedChange("enai | Address", val ue);

The mutator method does slightly more than change the private instance variable; it must also notify the
observer of the change, by invoking the method f i r eGbser vedChange() , which isimplemented by
the class Abst r act Conponent . This method is overloaded; implementations are provided for every
type of scalar value, and for j ava. | ang. Obj ect .

The value itself must be serializable (scalar values are converted to wrapper classes, which are serializ-
able).

23

../api/org/apache/tapestry/AbstractComponent.html

Tapestry Pages

The page designer must provide some additional code to manage the lifecycle of the page and its persist-
ent properties. This is necessary to support the "shell game" that allows a page instance to be separate
from its persistent state, and is best explained by example. Let's pretend that the user can select a person-
al preference for the color scheme of a page. The default color is blue.

The first user, Suzanne, reaches the page first. Didliking the blue color scheme, she uses a form on the
page to select a green color scheme. The instance variable of the page is changed to green, and the page
recorder inside Suzanne's session records that the persistent value for the color property is green.

When Suzanne revisits the page, an arbitrary instance of the page is taken from the pool. The page re-
corder changes the color of the page to green and Suzanne sees a green page.

However, if Nancy visits the same page for the first time, what is the color? Her page recorder will not
note any particular selection for the page color property. Shelll get whatever was left in the page's in-
stance variable ... green if she gets the instance last used to display the page for Suzanne, or some other
color if some other user recently hit the same page.

This may seem relatively minor when the persistent page state is just the background color. However, in
area application the persistent page state information may include user login information, credit card
data, the contents of a shopping cart or whatever. The way to deal with this properly is for each page
with persistent state to override the method det ach() . The implementation should reset any instance
variables on the page to their initial (freshly allocated) values.

In our example, when Suzanne is done with the page, its det ach() method will reset the page color
property back to blue before releasing it into the pool. When Nancy hits the page for the first time, the
page retrieved from the pool with have the expected blue property.

In other words, it is the responsibility of the developer to ensure that, as a page is returned to the pool, its
state is exactly the same as a freshly created page.

In our earlier email address example, the following additional code must be implemented by the page:

public void detach()
emai | Address = nul | ;

super . detach();

All properties, dynamic, transient and persistent, should be reset inside the det ach() method.
Individual components on a page may aso have dynamic, transient or persistent properties. If so, they

should implement the PageDet achLi st ener interface and implement the pageDet ached()
method and clear out such properties, just as apage doesindet ach() .

EJB Page Properties

Tapestry make asingle, special case for one particular type of persistent page property: referencesto En-
terprise JavaBeans.

The page recorders check to see if a page property istypej avax. ej b. EJBObj ect . If so, they don't
store the object itself (EJBObj ect s are not directly serializable), instead they get the Handl e for the
object and store that instead (Hand| es are seriaizable).

When the page is next accessed, the Handl e is converted back into an EJBCbj ect before assigning it

24

../api/org/apache/tapestry/event/PageDetachListener.html

Tapestry Pages

to the page property.

A side effect of thisisthat you may not have aHandl e as a persistant page property; the page recorders
don't have a way to differentiate a Handl e from an EJBCbj ect converted to a Handl e and always
assume the latter.

Dynamic Page State

The properties of a page and components on the page can change during the rendering process. These
are changes to the page's dynamic state.

The magjority of components in an application use their bindings to pull data from the page (or from
business objects reachable from the page).

A small number of components, notably the For each component, work the other way; pushing data
back to the page (or some other component).

The For each component is used to loop over a set of items. It has one parameter from which it reads
thelist of items. A second parameter is used to write each item back to a property of its container.

For example, in our shopping cart example, we may use a For each to run through the list of line items
in the shopping cart. Each line item identifies the product, cost and quantity.

Example4.1. HTML template for Shopping Cart

<h1>Cont ext of shopping cart for
John Doe</h1l>
<t abl e>
<tr>
<t h>Product </th> <th>Q y</th> <th>Price</t h>
</tr>

<tr>
<t d>Pr oduct Nane</t d>
<t d>5</td>
<t d>$1. 50</ span></td>
<td><a jwci d="renove" >r emove</ a></td>
</tr>
</ span>
</tabl e>

This example shows a reasonable template, including sample static values used when previewing the
HTML layout (they are removed by Tapestry at runtime). Some areas have been glossed over, such as
allowing quantities to be changed.

Component eachl t emis our For each. It will render its body (all the text and components it wraps)
several times, depending on the number of lineitemsin the cart. On each passit:

* Getsthe next value from the source

» Updates the value into some property of its container

* Rendersits body

25

../ComponentReference/Foreach.html
../ComponentReference/Foreach.html
../ComponentReference/Foreach.html
../ComponentReference/Foreach.html

Tapestry Pages

This continues until there are no more values in its source. Lets say thisisapagethat hasal i nel t em
property that is being updated by the eachl t emcomponent. The i nsert Product Nane, i nser -

tQuantity and insertPrice components wuse dynamic bindings such as
i neltem product Nane,lineltemquantityandlineltemprice.

Part of the page's specification would configure these embedded components.

Example 4.2. Shopping Cart Specification (excer pt)

<conponent id="eachltem' type="Foreach">
<bl ndi ng nane="source" expression="itens"/>
<bi ndi ng nanme="val ue" expression="lineltenl/>
</ conponent >

<conponent i d="insertProduct Nane type="Insert">
<bi ndi ng name="val ue" expression="1ineltem product Nanme"/>
</ conponent >

<conponent id="insertQuantity" type="Insert">
<bi ndi ng nane="val ue" expression="lineltem quantity"/>
</ conponent >

<conponent id="insertPrice" type="Ilnsert">
<bi ndi ng name="val ue" expression="lineltemprice"/>
</ conponent >

<conponent id="renove" type="ActionLi nk">
<bi ndi ng name="I|istener" expression="listeners.renoveltent/>
</ conponent >

This is very important to the r emove component. On some future request cycle, it will be expected to
remove a specific line item from the shopping cart, but how will it know which one?

Thisis at the heart of the action service. One aspect of the | Request Cycl e's functionality is to dole
out a sequence of action ids that are used for this purpose (they are also involved in forms and form ele-
ments). As the Act i onLi nk component renders itself, it allocates the next action id from the request
cycle. Regardless of what path through the page's component hierarchy the rendering takes, the numbers
are doled out in sequence. Thisincludes conditional blocks and loops such asthe For each.

The steps taken to render an HTML response are very deterministic. If it were possible to 'rewind the
clock' and restore all the involved objects back to the same state (the same values for their instance vari-
ables) that they were just before the rendering took place, the end result would be the same. The exact
same HTML response would be created.

This is similar to the way in which compiling a program from source code results in the same object
code. Because the inputs are the same, the results will be identical.

Thisfact is exploited by the action service to respond to the URL. In fact, the state of the page and com-
ponents is rolled back and the rendering processes fired again (with output discarded). The Act i on-
Li nk component can compare the action id against the target action id encoded within the URL. When
a match is found, the Act i onLi nk component can count on the state of the page and all components
on the page to be in the exact same state they were in when the page was previously rendered.

A small effort is required of the developer to always ensure that this rewind operation works. In cases
where this can't be guaranteed (for instance, if the source of this dynamic datais a stock ticker or unpre-
dictable database query) then other options must be used, including the use of the Li st Edi t compon-

26

../ComponentReference/Foreach.html
../ComponentReference/Insert.html
../ComponentReference/Insert.html
../ComponentReference/Insert.html
../ComponentReference/ActionLink.html
../api/org/apache/tapestry/IRequestCycle.html
../ComponentReference/ActionLink.html
../ComponentReference/Foreach.html
../ComponentReference/ActionLink.html
../ComponentReference/ActionLink.html
../ComponentReference/ActionLink.html
../ComponentReference/ListEdit.html

Tapestry Pages

ent.

In our example, the r enove component would trigger some application specific code implemented in
its containing page that removes the current | i nel t emfrom the shopping cart.

The application is responsible for providing a listener method, a method which is invoked when the link
istriggered.

Example 4.3. Listener method for remove component

public void renovel tem | Request Cycl e cycl e)

getCart().renove(lineltem;

This method is only invoked after all the page state is rewound; especially relevant isthe |l i nel t em
property. The listener gets the shopping cart and removes the current line item from it. This whole re-
winding process has ensured that | i nel t emis the correct value, even though the remove component
was rendered several times on the page (because it was wrapped by the For each component).

Listener Methodsvs. Listener Objects
Iy
Listener methods were introduced in Tapestry 1.0.2. Prior to that, it was necessary to cre-

ate a listener object, typicaly as an inner class, to be notified when the link or form was
triggered. This worked against the basic goal of Tapestry: to eliminate or simplify coding.
In reality, the listener objects are still there, they are created automatically and use Java re-
flection to invoke the correct listener method.

An equivalent JavaServer Pages application would have needed to define a servlet for removing items
from the cart, and would have had to encode in the URL some identifier for the item to be removed. The
serviet would have to pick apart the URL to find the cart item identifier, locate the shopping cart object
(probably stored in the Ht t pSessi on) and the particular item and invoke ther emove() method dir-
ectly. Finally, it would forward to the JSP that would produce the updated page.

The page containing the shopping cart would need to have special knowledge of the cart modifying ser-
vlet; its servlet prefix and the structure of the URL (that is, how the item to remove is identified). This
creates a tight coupling between any page that wants to display the shopping cart and the servlet used to
modify the shopping cart. If the shopping cart servlet is modified such that the URL it expects changes
structure, all pages referencing the serviet will be broken.

Tapestry eliminates all of these issues, reducing the issue of manipulating the shopping cart down to the
single, small listener method.

Stale Links and the Browser Back Button

The fact that web browsers have a "back" button is infuriating to application developers. What right
does the user have to dictate the order of navigation through the application? Whose application is this

anyway?

In atruly stateless application, the browser back button is not a great hardship, because each page carrys
within itself (as cookies, hidden form fields and encoded URLS) all the state necessary to process the

page.

27

../ComponentReference/Foreach.html

Tapestry Pages

Tapestry applications can be more stateful, which is a blessing and a curse. The blessing is that the
Tapestry application, running on the server, can maintain state in terms of business objects, data from
databases, Enterprise JavaBeans and more. The curse is that a user hitting the back button on the
browser loses synchronization with that state.

Let's use an e-commerce example. A user isbrowsing alist of available cameras from a product catal og.
The user clicks on a Minolta camera and is presented with pictures, prices and details about the Minolta
camera.

Part of the page lists similar or related items. The user clicks on the name of asimilar Nikon camera and
is shown the pictures, prices and details of the Nikon camera. The user then hits the browser back but-
ton, returning to the page showing the Minolta camera, and clicks the "add to shopping cart" button.
Web browsers have no way of informing the server that the user has employed the back button.

Once the user clicks the link, the server replies with a response showing the contents of the shopping
cart ... but what has been added to the cart, the Minolta or the Nikon? It depends on how the Tapestry
application has been structured.

Presumably, the application has a single page, named Pr oduct Det ai | s, that shows the pictures,
prices and details of any product. The Pr oduct Det ai | s page will have a persistent property named
product, of type Pr oduct . Pr oduct isabusiness classthat contains al that pricing and detail inform-
ation.

The question is, how is the add to shopping cart link implemented? If its logic is to add whatever the
current value of the product property is (i.e., by using an Act i onLi nk component or part of a form)
then it will add the Nikon camera, since that's the current product (the most recent one displayed to the
user, as far as the server is concerned # it has no way to know the user hit the back button and was star-
ing at the Minolta when the link was clicked). This is the natural approach, since it doesn't take into ac-
count the possiblility that the user worked backwards to a prior page.

On the other hand, if aDi r ect Li nk component is used, it can encode into the URL the primary key of
the Minolta product, and that will be the product added to the shopping cart, regardless of the current
value of the product property.

HTML Forms, controlled by the For m component, are also susceptible to these issues related to the
browser back button. Still, there are techniques to make even forms safe. Borrowing an idea from more
traditional JavaServer Pages development, a hidden field can be included in the form to sychronize the
form and the application ... for example, including the primary key of the Minolta or Nikon product.
Tapestry includesaHi dden component used for just this purpose.

Finally, the Li st Edi t component exists to help. It works like a For each, but encodes the humber
and value of theitemsit iterates as hidden form fields.

Page Loading and Pooling

The process of loading a page (instantiating the page and its components) can be somewhat expensive. It
involves reading the page's specification as well as the specification of all embedded components within
the page. It also involves locating, reading and parsing the HTML templates of all components. Com-
ponent bindings must be created and assigned.

All of thistakestime ... not much time on an unloaded server but potentially longer than is acceptable on
abusy site.

It would certainly be wasteful to create these pages just to discard them at the end of the request cycle.

Instead, pages are used during a request cycle, and then stored in a pool for later re-use. In practice, this
means that a relatively small nhumber of page objects can be shared, even when there are a large number

28

../ComponentReference/ActionLink.html
../ComponentReference/DirectLink.html
../ComponentReference/Form.html
../ComponentReference/Hidden.html
../ComponentReference/ListEdit.html
../ComponentReference/Foreach.html

Tapestry Pages

of clients (asingle pool is shared by al clients). The maximum number of instances of any one page is
determined by the maximum number of clients that simultaneously process a request that involves that
page.

Figure4.1. Page Lifecycle

Instantiated

Detached

Retrieved From Fool

Attached Detached and Stored

As the page is retrieved from the pool, all of its persistent page properties are set. Thus the page is equi-
valent to the page last used by the application, even if it is not the same instance. Thisincludes any state
(that is, the settings of any instance variables) that are particular to the client.

This process is managed by the | Request Cycl e. When asked for a page, it checks whether the page

has been accessed yet for this request. If not, the page must be obtained from the page loader and prop-
erly attached and configured.

Figure 4.2. Page L oading Sequence

29

../api/org/apache/tapestry/IRequestCycle.html

Tapestry Pages

cycle : engine record ar ; page P age SOUFCE
[ReguestCycle IEngine |PageRecorder |PageSource
| getPagel) |
getPageSourcel

getPage()

setRequestCyc|el)

getPageRecnrdLr()

rallback ()

|
| |
| |
| |
| attach()
Bl
|
| |
| |
L set properties |
|
I
| |
| |
| |
| |

_

The page loader maintains a pool of pages, or can construct a new page instance as needed. The
| PageRecor der for the page tracks the persistant page properties and can reset the properties of the
page instance to values appropriate to the current session.

A page istaken out of the pool only long enough to process arequest for a client that involvesit. A page
isinvolved in arequest if it contains the component identified in the service URL, or if application code
involves the page explicitly (for instance, uses the page to render the HTML response). In either case, as
soon as the response HTML stream is sent back to the client, any pages used during the request cycle are
released back to the pool.

This means that pages are out of the pool only for short periods of time. The duration of any single re-
guest should be very short, a matter of a second or two. If, during that window, a second request arrives
(from a different client) that involves the same page, a new instance will be created. Unless and until
that happens, a single instance will be used and re-used by all clients, regardless of the number of cli-
ents.

Pages stay in the pool until culled, at which point the garbage collector will release the memory used by

the page (and all the components embedded in it). The default behavior is to cull unused pages after ap-
proximately ten minutes.

Page Localization

When a pageisfirst instantiated, its localeis set to match the locale of the engine it is loaded into.
This page localeisread-only; it is set when the page isfirst created and never changes.

Any component or asset on the page that needs to be locale-specific (for instance, to load the correct
HTML template) will reference the page's locale.

As noted previously, pages are not discarded; they are pooled for later reuse. When an engine gets an ex-
isting page from the pool, it aways matches its locale against the pooled page's locale. Thus a page and

30

../api/org/apache/tapestry/IPageRecorder.html

Tapestry Pages

its engine will always agree on locale, with one exception: if the engine locale is changed during the re-
guest cycle.

When the engine locale changes, any pages loaded in the current request cycle will reflect the prior loc-
ale. On subsequent request cycles, new pages will be loaded (or retrieved from the pool) with locales
matching the engine's new locale.

Tapestry does not currently have a mechanism for unloading a page in the same request cycle it was
loaded (except at the end of the request cycle, when all pages are returned to the pool). If an application
includes the ability to change locale, it should change to a new page after the local e change occurs.

Changing locale may have other, odd effects. If part of a page's persistent state is localized and the ap-
plication locale is changed, then on a subsequent request cycle, the old localized state will be loaded into
the new page (with the new locale). This may also affect any components on the page that have persist-
ent state (though components with persistent state are quite rare).

In general, however, page localization is as easy as component localization and is usually not much of a
consideration when designing web applications with Tapestry.

Page Buffering

The HTML response generated by a page during rendering is buffered. Eight kilobytes of 8-bit ASCII
HTML is allowed to accumulate before any HTML output is actually sent back to the client web
browser.

If a Java exception is thrown during the page rendering process, any buffered output is discarded, and
the application-defined exception page is used to report the exception to the user.

If a page generates a large amount of HTML (larger than the 8KB buffer) and then throws an exception,
the exception page is till used to report the exception, however the page finally viewed in the client
browser will be "ugly", because part of the failed page's HTML will appear, then the complete HTML of
the exception page.

In practice, virtualy all Tapestry pages will use a Body component wrapping the majority of the page
(it takes the place of the norma <body> element), and a Body component buffers the output of all
components in its body. This buffering is necessary so that the Body component can write out various
JavaScript handlers before the main body of HTML is written (this is often related to the use of the
Rol | over and Scri pt components).

In any case, whenever aBody component is used, an exception thrown during the rendering of the page
will cause al the HTML buffered by the Body component to be cleanly discarded, allowing for a clean
presentation of the exception page.

Page Events

Each page has a lifecycle; it is created and attached to an engine. It will render itself. It is placed in a
pool for later reuse. Later, it comes out of the pool and is attached to a new engine to start the process
again. There are cases where objects, especially the components embedded somewhere within the page,
need to know about this lifecycle.

| Page can produce a number of events related to its lifecycle. PageRender Li st ener is a listener

interface for determining when the page starts and finishes rendering (this includes rewind renders re-
lated to the Act i onLi nk component).

Figure 4.3. Page Render Sequence

31

../ComponentReference/Body.html
../ComponentReference/Body.html
../ComponentReference/Body.html
../ComponentReference/Rollover.html
../ComponentReference/Script.html
../ComponentReference/Body.html
../ComponentReference/Body.html
../api/org/apache/tapestry/IPage.html
../api/org/apache/tapestry/event/PageRenderListener.html
../ComponentReference/ActionLink.html

Tapestry Pages

gngine : cycle page : \Page listener :
Engine FequestCyele PageRenderlistener
| renderF agel) | |)
! renderFPagel) l pageBeginRender()

commitPageChanges() D = beginResponse

pageEndRender()

|

|

(] Li_l

|

[% render() :
Y

|

|

—_—]
_—— —

The call to commi t PageChanges() isvery important. It is not possible to make any changes to per-
sistant page properties after this method is invoked; doing so will throw an exception.

Figure 4.4. Page Rewind Sequence

angine cycle : page : IPage listener :
IEngine IFequestCycle PangeRended istener

| | i

| rewvindFage | |
L 9el) LrenderPagel) | pageBeginRender])

[]; render()

pageEndRender()

|
I
[]g beginResponse()I-ij
|
|
|

Page rewinds, which are related to the For mand Act i onLi nk components, also perform arender op-
eration in order to restore dynamic state on the page. The PageRender Li st ener events are still
fired. The event listeners can invoke i sRewi ndi ng() on | Request Cycl e to determine whether
thisisanormal render, or for rewind purposes.

32

../ComponentReference/Form.html
../ComponentReference/ActionLink.html
../api/org/apache/tapestry/event/PageRenderListener.html
../api/org/apache/tapestry/IRequestCycle.html

Tapestry Pages

The PageDet achLi st ener interface is used by objects that wish to know when the page is detached
from the application, prior to be stored into the page pool (for later reuse). Thisis used by any compon-
ents that maintain any independent state.

Figure 4.5. Page Detach Sequence

engine cycle: SOUMCE page : IPage listener
IRequestCycle IHeguestCycle [PageSource PageDetachlistener

releasePage() |
L detach()

pageDetached()

cleanupi] ! | ||] |:|
I
|
|
|
|
|

|
|
i
|
|
|
|
|

—_— —

This cleanup occurs at the end of the request, after a response has been sent to the client web browser.

The engine knows when the Ht t pSessi on has been invalidated because the container will invoke
val ueUnbound() . It loads and rolls back each page, then invokes cl eanupPage() to alow the
page to gracefully cleanup any held resources.

Components that implement one of these interfaces usually override the method f i ni shLoad() (from
Abst r act Conponent) to register themselves with the page.

33

../api/org/apache/tapestry/event/PageDetachListener.html
../api/org/apache/tapestry/AbstractComponent.html

Chapter 5. Application Engines and
Services

The application engine is a central object whose responsibility is to run the request cycle for each re-
quest. To do this, it manages resources such as page |oaders and page recorders and provides services to
the pages and components utilized during the request cycle.

Application engines are instantiated by the application's servlet (described in the next section). They are
stored into the Ht t pSessi on and are persistent between request cycles.

An important behavior of the engine is to provide named engine services, which are used to create and
respond to URLs. The application engine creates and manages the request cycle and provides robust de-
fault behavior for catching and reporting exceptions.

The application engine provides the page recorder objects used by the request cycle. By doing so, it sets
the persistence strategy for the application as a whole. For example, applications which use or subclass
Si npl eEngi ne will use the simple method of storing persistent state: in memory. Such applications
may still be distributed, since the page recorders will be serialized with the application engine (which is
stored within the Ht t pSessi on).

Application Servlet

Every Tapestry application has a single servlet, which acts as a bridge between the servlet container and
the application engine. The application servlet isan instance of Appl i cati onServl et .

The first thing a servlet does, upon initialization, is read the application specification. To do this, it must
know where the application specification is stored.

Specifications are stored on the classpath, which means in a JAR file, or in the WVEB- | NF/ cl asses
directory of the WAR.

The servlet determines the location of the application specification from the web deployment descriptor.
A servlet initialization property, or g. apache. tapestry. application-specification
provides the locations of the specificiation as a path.

Example 5.1. Web Deployment Descriptor

<?xm version="1.0"?>
<! DOCTYPE web-app PUBLIC "-//Sun M crosystens, Inc.//DTD Wb Application 2.2//EN
"http://java. sun. com j 2ee/ dt ds/ web-app_2_ 2. dtd">
<web- app>
<di spl ay- name>Tapestry Virtual Library Deno</di spl ay- nane>
<servl et >
<servl et - name>vl i b</ servl et - nane>
<servl et - cl ass>or g. apache. t apestry. Appl i cati onServl et </ servl et -cl ass>
<init-paranp
<par am nane>or g. apache. t apestry. appl i cati on-speci fi cati on</ param nane>
<par am val ue>/ net/sf/tapestry/vlib/Vlib.application</param val ue>
</init-parant
<| oad- on- st art up>0</ | oad- on- st art up>
</servl et>

../api/org/apache/tapestry/engine/SimpleEngine.html
../api/org/apache/tapestry/ApplicationServlet.html

Application Engines and Services

<I-- The single mapping used for the Virtual Library application -->

<ser vl et - mappi ng>
<servl et - name>vl i b</ servl et - nane>
<url -pattern>/app</url-pattern>
</ servl et - mappi ng>

<sessi on-config> _ _
~ <session-tineout >15</ sessi on-ti meout >
</ sessi on- confi g>

<wel come-file-list>
<wel come-fil e>i ndex. ht M </ wel cone-fil e>
</wel come-file-list>

</ web- app>

The servlet's main job is to find or create the | Engi ne instance. It then delegates al the behavior for
processing the request to the application engine. Encoded in the URL will be a particular application ser-
vice; the engine delegates to the service to perform the real work of handling the request.

Figure5.1. ApplicationServlet Sequence

Serdet servet Engine Senice
Container ApplicationSerylet |[Engine |[EngineService

| doGet(]/ doPost() _ |

getEnginel)

servicel) ! servicel)

Required Pages

Each application is required to have a minimum of five pages with specific hames. Tapestry provides
default implementations for four of the five, but afull-featured Tapestry application may override any of
the othersto provide a consistent look-and-feel.

Tableb5.1. Tapestry Pages

Page Name Required Description

Exception Default provided, may be overridden. | Page used to present uncaught excep-
tions to the user.

35

../api/org/apache/tapestry/IEngine.html

Application Engines and Services

Page Name

Required

Description

Home

Must be provided by developer. The initial page displayed when the
application is started.

Provided, never overriden. Inspector that allows the Tapestry ap-
plication to be interrogated on its
structure.

Provided Page displayed when a StaleLinkEx-
ception is thrown during the pro-
cessing of arequest.

StaleSession Provided Page displayed when a StaleSes

sionException is thrown during the
processing of arequest.

Tapestry only mandates the logical name of these four pages; the actual page component used is defined
in the application specification.

The Hore page is the first page viewed by a client connecting to the application. Other than that, there
is nothing special about the page.

The initial connection to the application, where nothing is specified in the URL but the path to the ser-
vlet, causes the home service to be invoked, which makes use of the home page. The restart service will
also redirect the user to the home page.

No default is provided for the Hone page; every Tapestry application must define its own Hone page.
The Exception page isinvoked whenever an uncaught exception is thrown when processing a service.

The Tapestry framework catches the exception and discards any HTML output (this is why output is
buffered in memory).

The Exception page must implement a writable JavaBeans property of type
j ava. | ang. Thr owabl e named except i on. The framework will invoke the accessor method be-
fore the page is rendered.

The class Excepti onAnal yzer and the Excepti onDi spl ay component are typically used to
present this information.

The St al eLi nk pageisdisplayed when a St al eLi nkExcept i on isthrown, which may occur dur-
ing the processing of the request. The exception is thrown when Tapestry determines that the state of the
page (on the server) is out of synch with the client's view of the page ... this most often happens when
the user makes use of the browser's back button. 1

The default implementation informs the user of the problem ("you really shouldn't use the back button
on your browser") and uses the home service to create alink back to the Horre page.

The St al eSessi on page is displayed when a
org. apache. tapestry. St al eSessi onExcept i on is thrown. This exception is thrown when
the component is configured to be stateful (which is the default) and the Ht t pSessi on doesn't exist,
or is newly created - this indicates a fresh connection to the servlet container after the old session timed
out and was discarded. 2

The | nspect or page is provided by the framework; it allows a developer to interrogate a running

1 If desired, the application engine can override the method handl eSt al eLi nkExcepti on() . The default implementation of this method
redirects to the St al eLi nk page, but a custom implementation could set up an error message on the application's Horre page and redirect there

instead.

2 Likewise, the default behavior can be changed by overriding the method handl eSt al eSessi onExcepti on() .

36

../api/org/apache/tapestry/util/exception/ExceptionAnalyzer.html
../ComponentReference/ExceptionDisplay.html
../api/org/apache/tapestry/StaleLinkException.html

Application Engines and Services

Tapestry application to determine its structure.

Server-Side State

There are two types of server side state that are supported by Tapestry: persistent page properties and the
visit object. Thefirst (page properties) have aready been discussed.

The visit object is a central repository for application state and presentation logic. The visit object is ac-
cessible through the application engine (the engine implementsavi si t property). The application en-
gine doesn't care about the class of the visit object, or what propertiesit implements.

The visit abject holds central information that is needed by many pages. For example, an e commerce
application may store the shopping cart as a property of the visit object.

When using Enterprise JavaBeans, the visit object is a good place to store remote object references
(centralizing the logic to look up home interfaces, instantiate references, etc.).

Every pageimplementsavi si t property that allows access to the visit object.

When using the Si npl eEngi ne engine, the visit object is created the first time it is referenced. The
class of the visit object is stored in the application specification.

Stateful vs. Stateless

Through Tapestry release 1.0.0, an Ht t pSessi on was created on the very first request cycle, and an
engine was created and stored into it.

This comes at some cost, however. Creating the session is somewhat expensive if it is not truly needed,
and causes some overhead in a clustering or failover scenario. In fact, until some real server-side stateis
created; that is, until a persistent page property is recorded or the visit object created, it isn't realy ne-
cessary to store any server-side state for a particular client.

Starting with Tapestry release 1.0.1, the framework will operate statelessly as long as possible. When
triggered (by the creation of avisit, or by a persistent page property) an Ht t pSessi on will be created
and the engine stored within it and the application will continue to operate pretty much as it does in
Tapestry release 1.0.0.

While the application continues statel essly, the framework makes use of a pool of engine instances. This
is more efficient, as it reduces the number of objects that must be created during the request cycle.
However, the major reason for running statelessly is to bypass the overhead statefulness imposes on the
application server.

Of coursg, if rendering the Hone page of your application triggers the creation of the Ht t pSessi on 3,

then nothing is gained. A well designed application will attempt to defer creation of the session so that,
at least, the Hone page can be displayed without creating a session.

Engine Services

Engine services provide the structure for building a web application from individual pages and compon-
ents.

Each engine service has a unique name. Well known names exist for the basic services (page, action,
direct, etc., described in alater section).

3 That is, changes a persistent page property, or forces the creation of the visit object.

37

../api/org/apache/tapestry/engine/SimpleEngine.html

Application Engines and Services

Engine services are responsible for creating URLS (which are inserted into the response HTML) and for
later responding to those same URLS. This keeps the meaning of URLs localized. In atypical serviet or
JSP application, code in one place creates the URL for some servlet to interpret. The servlet isin acom-
pletely different section of code. In situations where the servlet's behavior is extended, it may be neces-
sary to change the structure of the URL the servlet processes ... and this requires finding every location
such a URL is constructed and fixing it. Thisisthe kind of inflexible, ad-hoc, buggy solution Tapestry is
designed to eliminate.

Most services have a relationship to a particular component. The basic services (action, direct, page)
each have a corresponding component (Act i onLi nk, Di r ect Li nk, PageLi nk). The following ex-
ampl e shows how the PageLi nk component is used to create a link between application pages.

First, an extract from the page's HTML template:

Cick here to | ogin.

Thisis combined with the a<conponent > declaration in the the page's specification:

<conponent id="login" type="PagelLi nk">
<static-bi ndi ng nane="page" >Logi n</ st ati c- bi ndi ng>
</ conponent >

Thel ogi n component will locate the page service, and provide 'Login’ (the name of the target page) as
a parameter. The page service will build and return an appropriate URL, which the | ogi n component
will incorporate into the <a> hyperlink it generates.

Theresulting HTML:

Cick here to | ogin.

If the user later clicks that link, the application will invoke the page service to handle the URL; it will
extract the page name (Logi n) and render that page.

The other services are more or less complicated, but share the same basic trait: the service provides the
URL and later respondsiif the URL istriggered.

Links (Act i onLi nk, Di r ect Li nk, etc.) and For s use services in slightly different ways. Links en-

code all the information directly into the URL whereas For ns encode most of the information as hidden
form fields.

Figure5.2. Services and Gestures

38

../ComponentReference/ActionLink.html
../ComponentReference/DirectLink.html
../ComponentReference/PageLink.html
../ComponentReference/PageLink.html
../ComponentReference/PageLink.html
../ComponentReference/ActionLink.html
../ComponentReference/DirectLink.html
../ComponentReference/Form.html
../ComponentReference/Form.html

Application Engines and Services

Serice gesture wiriter
[Engine Service Gesture |FesponseYWriter

| build Gesture(

getFullURL)

JI
”|
i
|
|
|

|
| |
| |
| |
" |
| Ll
T | |
| bulldiGesture(: :
getServIetF‘athH | |

! 1
| /I-H |
get@uerylﬂaram!eters[j | :

I

| LIJ |
| | Ll
T | | |
| | |
| | |

In the first part, a service generates a Gest ur e and then extracts the full URL from it, for use as the
hr ef attribute of the <a> tag.

In the second part, a service is used to access the servlet path (which becomes the act i on attribute of
the <f or m> element). The query parameters are individually extracted and encoded as hidden fields in
the form.

Logging

Tapestry makes use of the Apache group's Log4J package to perform logging. This is an easy, fast,
powerful framework for adding logging to any Java application. Using Log4J, any number of loggers
can be created, and a logging level for each logger assigned. Tapestry uses the complete class name as
the logger for each class.

39

http://jakarta.apache.org/log4j/
http://jakarta.apache.org/log4j/

Application Engines and Services

The Appl i cati onSer vl et class includes a method, set upLoggi ng(), to help initialize Log4J,
allowing the default configuration to be overridden using command line parameters.

The Tapestry Inspector includes a Logging tab that allows the logging configuration to be dynamically
changed. The logging level for any logger can be assigned, and new loggers can be created.

What this means is that, using the Inspector, it is possible to control exactly what logging output is pro-

duced, dynamically, while the application is still running. The Tapestry Inspector is easily added to any
Tapestry application.

Private Assets

The application engine is responsible for making private assets, assets that are stored on the Java
classpath, visible when necessary to client web browser.

This takes two forms:

» Dynamic download of asset data viathe application servlet.

» Dynamic copying of asset data into the web server's virtual file system.

Thefirst form is the default behavior; each private asset requires an additional round trip through the ap-
plication server and application engine to retrieve the stream of bytes which make up the asset. Thisis
fine during development, but less than ideal at deployment, since it places an extra burden on the servlet
container, stealing valuable cycles away from the main aspects of servicing end users.

The second form is better during deployment. The bytestreams are copied out of the classpath to a spe-
cific directory, one that is mapped into the web server's virtua file system. Once it is so copied, the ac-
cessto the asset is completely static, as with any other image file or HTML page.

To enable dynamic copying, it is necessary to inform the framework about what file system directory to

copy the assets to, and what virtual file system directory that maps to. This is accomplished using a pair
of WM system properties:

JVM System Properties

org. apache. tapestry. asset.dir
The complete pathname of a directory to which private assets may be copied by the asset externalizer.

org. apache. tapestry. asset. URL
The URL corresponding to the external asset directory.

40

../api/org/apache/tapestry/ApplicationServlet.html
http://jakarta.apache.org/log4j/

Chapter 6. Understanding the Request
Cycle

Web applications are significantly different in structure from other types of interactive applications. Be-
cause of the stateless nature of HTTP (the underlying communication protocol between web browsers
and web servers), the server is constantly "picking up the pieces’ of a conversation with the client.

Thisis complicated further in a high-volumes systems that utilizes load balancing and fail over. In these
cases, the server is expected to pick up a conversation started by some other server.

The Java Servlet API provides a base for managing the client - server interactions, by providing the Ht -
t pSessi on object, which is used to store server-side state information for a particular client.

Tapestry picks up from there, allowing the application engine, pages and components to believe (with
just alittle bit of work) that they are in continuous contact with the client web browser.

At the center of thisis the request cycle. This request cycle is so fundamental under Tapestry that a par-
ticular object represents it, and it is used throughout the process of responding to a client request and
creating an HTML response.

Each application service makes use of the request cycle in its own way. Well describe the three com-
mon application services (page, action and direct), in detail.

In most cases, it is necessary to think in terms of two consecutive request cycles. In the first request

cycle, a particular page is rendered and, along the way, any number of URLs are generated and included
inthe HTML. The second request cycleistriggered by one of those service URLS.

Service URLs and query parameters

All URLSs generated by the framework consist of the the path to the servlet, and up to three query para-
meters.
» servi ce: the name of the service that will be used to processes the request.

» cont ext : contextual information needed by the service; typically the name of the page or compon-
ent involved. Often there are several pieces of information, separated by slashes.

e sp: additional parameters that can be made available to the component. Thisisused by aDi r ect -

Li nk component. If there is more than one service parameter, then there will be multiple sp para
metersin the URL.

Page service

The page service is used for basic navigation between pages in the application. The page service is
tightly tied to the PageLi nk component.

A page service stores the name of the page as the single value in the service context.

The request cycle for the page service isrelatively ssimple.

41

../ComponentReference/DirectLink.html
../ComponentReference/DirectLink.html
../ComponentReference/PageLink.html

Understanding the Request Cycle

Figure 6.1. Page Service Sequence

Enging : SERICE page : [Page cycle
|[Engine |[Enginesenice IFeguestCycle

. service() 5 :

: 5 getPagel)
validate() |_|
setPage()
renderFage() _

|

The URL contains the name of the page, and the corresponding page is aquired from the request cycle.
The page is given a chance to validate that the user can accessit, it can throw PageRedi r ect Excep-

ti on to force arender of a different page. Otherwise, set Page() tells the request cycle which page
will be used to render aresponse, and r ender Page() peforms the actual render.

Action and Direct listeners

TheAct i onLi nk, Di rect Li nk and For mcomponents (which make use of the action and direct ser-
vices) inform the application when they have been triggered using listeners.

A listener is an object that implementsthe | Act i onLi st ener interface.

public void actionTriggered(lConponent conponent, | RequestCycle cycle)
t hrows Request Cycl eExcepti on;

Prior to release 1.0.2, it was hecessary to create an object to be notified by the component; this was al-
most always an annonymous inner class:

42

../api/org/apache/tapestry/PageRedirectException.html
../api/org/apache/tapestry/PageRedirectException.html
../ComponentReference/ActionLink.html
../ComponentReference/DirectLink.html
../ComponentReference/Form.html
../api/org/apache/tapestry/IActionListener.html

Understanding the Request Cycle

public I ActionListener getFornListener()
return new | Acti onLi st ener ()

public void actionTriggered(lConponent conponent, | RequestCycle cycle)
t hrows Request Cycl eExcepti on

/1 perform sone operation ...

Although elegant in theory, that's ssimply too much Java code for too little effect. Starting with Tapestry
1.0.2, it ispossible to create a listener method instead.

A listener method takes the form:

public voi d nethod- name(| Request Cycl e cycl e)
t hrows Request Cycl eExcepti on;

Note
The throws clause is optional and may be omitted. However, no other exception may be

thrown.

In reality, listener objects have not gone away. Instead, there's a mechanism whereby a listener object is
created automatically when needed. Each component includes a property, | i st ener s, that is a collec-
tion of listener objects for the component, synthesized from the available public methods. The listener
objects are properties, with the names corresponding to the method names.

Tip
The class Abst r act Engi ne (the base class for Si npl eEngi ne) aso implements a
listeners property. This allows you to easily add listener methods to your application en-
gine.

The earlier example is much simpler:

public void fornBubmt (Il Request Cycl e cycle)

[l perform sone operation ...

However, the property path for the listener binding must be changed, from f or nLi st ener to
listeners. fornSubmt.

43

../api/org/apache/tapestry/engine/SimpleEngine.html

Understanding the Request Cycle

Direct service

The direct service is used to trigger a particular action. This serviceistied to the Di r ect Li nk com-
ponent. The service context identifies the page and component within the page. Any parameters spe-
cified by the Di r ect Li nk component's cont ext parameter are encoded as well.

The request cycle for the direct service is more complicated that the page service.

Figure6.2. Direct Service Sequence

engine : Serice cycle page : IPage direct : 1Direct listener
I[Engine I[EngineService | | [RequestCycle lActionlistener
sericel | D
getPage() : ; ,
validate() i |
setPage() |"|
getiestedComponent()
trigoer ' :
gger() : actionTriggerady;)
renderPager) \» :

As with the page service, the page involved has a chance validate the request. The component is located
within the page, and the page is set as the default response page. The listener is free to override this, and
can load other pages, change their properties, or otherwise affect the state of the application.

After the listener has its chance to respond to the request, a response page is renderred.

| Direct vs.DirectLink
The sequence shown above is for the Di r ect Li nk component, which implements the

| Di rect interface. In some rare cases, it is desirable to have a different component im-
plement the | Di r ect interface instead. It will still implement thet ri gger () method,
but will respond in its own way, likely without a listener.

This is the primary way (besides forms) in which applications respond to the user. What's key is the
component's listener, of type | Acti onLi st ener. This is the hook that allows pre-defined cotheir-
ponents from the Tapestry framework to access application specific behavior. The page or container of
the Di r ect Li nk component provides the necessary listener objects using dynamic bindings.

The direct service is useful in many cases, but does have its limitations. The state of the page when the
listener is invoked is its state just prior to rendering (in the previous request cycle). This can cause a
problem when the action to be performed is reliant on state that changes during the rendering of the

44

../ComponentReference/DirectLink.html
../ComponentReference/DirectLink.html
../ComponentReference/DirectLink.html
../api/org/apache/tapestry/IDirect.html
../api/org/apache/tapestry/IDirect.html
../api/org/apache/tapestry/IActionListener.html
../ComponentReference/DirectLink.html

Understanding the Request Cycle

page. In those cases, the action service (and Act i onLi nk or For mcomponents) should be used.

TheDi r ect Li nk component has an optional parameter named par anet er s. The value for this may
be asingle object, an array of objects, or aLi st . Each object is converted into a string encoding, that is
included in the URL. When the action is triggered, the array is reconstructed (from the URL) and stored
in the | Request Cycl e, where it is available to the listener. The type is maintained, thus if the third
parameter is of type | nt eger when the URL is generated, then the third parameter will still bean | n-
t eger when the listener method isinvoked.

Thisis avery powerful feature of Tapestry, as it alows the developer to encode dynamic page state dir-
ectly into the URL when doing so is not compatible with the action service (described in the next sec-
tion).

The most common use for these service parameters is to record an identifier for some object that is af-
fected by the link. For example, if the link is designed to remove an item from the shopping cart (in an
e-commerce example), the service parameters could identify which item to remove in terms of a primary
key, or line number within the order.

Action service

The action service is also used to trigger a particular application-specific action using an Act i onLi nk
component, and its listener. The action service may also be used by the For m component to process
HTML form submissions.

An action service encodes the page name and component for the request. It also includes an action id.

The request cycle for the action service is more complicated that the direct service. This sequence as-
sumes that the component is an Act i onLi nk, the details of handling form submissions are described
in alater section.

Figure 6.3. Action Service Sequence

45

../ComponentReference/ActionLink.html
../ComponentReference/Form.html
../ComponentReference/DirectLink.html
../api/org/apache/tapestry/IRequestCycle.html
../ComponentReference/ActionLink.html
../ComponentReference/Form.html
../ComponentReference/ActionLink.html

Understanding the Request Cycle

engine : SEMICE cyvcle page : |Page action : lAction listenar :
Enijine |[EngineService RequestCycle lActionlistener

| semvice() |

getFage() |

getMestedC Dmpcrnent(]

getRequiresSesgion()
I

validate() |

setPage() |
=

rewindPagel) |

renderPage()

render(

|
|
|
i
!
|

isRewound()

U actionTriggered())

renderPagel
—

-—— — —

-— — — — —]
- —]

The point of the action service is to restore the dynamic state of the page to how it was when the Ac-
t i onLi nk component rendered the link. Only then is the listener notified.

The process of restoring the page's dynamic state is called rewinding. Rewinding is used to go beyond
restoring a page's persistent state and actually restore the page's dynamic state. Whatever state the page
was in when the action URL was rendered in the previous request cycle is restored before the Act i on-
Li nk component's listener isinvoked.

Use of the action service is convenient, but not always appropriate. Deeply nested For each compon-
ents will result in a geometric increase in processing time to respond to actions (as well as render the
HTML).

If the data on the page is not easily accessible then the action service should be avoided. For example, if
the page is generated from a long running database query. Alternate measures, such as storing the results
of the query as persistent page state should be used. Another aternative is to use the direct service (and
Di r ect Li nk component) instead, asit allows the necessary context to be encoded into the URL, using
service parameters. This can be very useful when the dynamic state of the page is dependant on expens-
ive or unpredictably changing data (such as a database query).

For example, a product catalog could encode the primary key of the products listed as the service para-
meters, to create links to a product details page.

46

../ComponentReference/ActionLink.html
../ComponentReference/ActionLink.html
../ComponentReference/ActionLink.html
../ComponentReference/ActionLink.html
../ComponentReference/Foreach.html
../ComponentReference/DirectLink.html

Understanding the Request Cycle

Services and forms

Processing of requests for For mcomponents is a little more complicated than for ordinary Act i on-
Li nk components. This is because a For mwill wrap a nhumber of form-related components, such as
Text Fi el d, Checkbox, PropertySel ecti on and others.

In order to accept the results posted in the HTML form, each of these components must be given a
chance to respond to the request. A component responds to the request by extracting a request parameter
fromthe Ht t pSer vl et Request , interpreting it, and assigning a value through a parameter.

Aswith an Act i onLi nk component, afull rewind must be done, to account for conditional portions of
the page and any For each components.

Note
Starting with Tapestry release 1.0.2, For ms may now use the direct service instead of the

action service; this is configurable. Using the direct service is the default behavior unless
specified. A rewind still occurs, it simply starts directly with the For mcomponent, rather
than having to "work down" to it. This can be a performance gain if a page contains many
forms.

The For mcomponent doesn't terminate the rewind cycle until after al of its wrapped components have
had a chance to render. It then notifiesits own listener.

The basic components, Text Ar ea and Text Fi el d, are quite simple. They simply move text between
the application, the HTML and the submitted request.

Individual Checkbox components are also simple: they set a boolean property. A Radi oG oup and
some Radi o components allow a property to be set to a value (dependent on which radio button is se-
lected by the user). The Pr oper t ySel ect i on component is designed to more efficiently handle this
and can produce HTML for either a popup list or a collection of radio buttons.

Tapestry aso includes the more involved component, Val i dFi el d, which is similar to the ssimple
Text Fi el d component, but provide greater validation and checking of input, and provides the ability
to visually mark fields that are required or in error.

Regardless of which service the For muses, it encodes the query parameters (which identify the service
and context) as hidden field elements, rather than encoding them into the URL. This is necessary be-
cause some servlet containersignore URL query parameters when using the HTTP POST request; there-
fore, it is necessary that all query parameters (including the ones related to the engine service), be part of
the form posting ... and that means the use of hidden fieldsin the form.

47

../ComponentReference/Form.html
../ComponentReference/ActionLink.html
../ComponentReference/ActionLink.html
../ComponentReference/Form.html
../ComponentReference/TextField.html
../ComponentReference/Checkbox.html
../ComponentReference/PropertySelection.html
../ComponentReference/ActionLink.html
../ComponentReference/Foreach.html
../ComponentReference/Form.html
../ComponentReference/Form.html
../ComponentReference/Form.html
../ComponentReference/TextArea.html
../ComponentReference/TextField.html
../ComponentReference/Checkbox.html
../ComponentReference/RadioGroup.html
../ComponentReference/Radio.html
../ComponentReference/PropertySelection.html
../ComponentReference/ValidField.html
../ComponentReference/TextField.html
../ComponentReference/Form.html

Chapter 7. Designing Tapestry
Applications

When first starting to design a Tapestry application, the designer consider some basic elements as a
guideto the overall design of the application.

Persistent Storage Strategy

Tapestry pages store a certain amount of client state between request cycles. Each implemention of the
| Engi ne interface provides a different strategy.

Currently, only the Si npl eEngi ne class is provided with the framework; it uses in-memory page re-
corders. When the engine is serialized, the page recorders are serialized along with it.

The | PageRecor der interface doesn't specify anything about how a page recorder works. This opens
up many possibilities for storage of state, including flat files, databases, stateful EJB session beans, or
HTTP Cookies.

In fact, a very sophisticated application engine could mix and match, using cookies for some pages, in-
memory for others.

By default, page recorders stay active for the duration of the user session. If a page will not be refer-
enced again, or its persistent state is no longer relevant or needed, the application may explicitly "forget"
its state.

Remember that for load balancing and fail over reasons, the engine will be serialized and de-serialized.
Ideally, its serialized state should be less than two kilobytes; because Java serialization isinefficient, this
does not leave much room.

The Tapestry Inspector can be used to monitor the size of the serialized engine in a running application.

Identify Pages and Page Flow

Early in the design process, the page flow of the application should be identified. Each page should be
identified and given a specific name.

Page names are less structured than other identifiersin Tapestry. They may contain letters, numbers, un-
derscores, dashes and periods. Tapestry makes absolutely no interpretation on the page names.

In many applications, certain parts of the functionality are implemented as "wizards', several related
pages that are used in sequence as part of a business process. A common example of thisisinitia user
registration, or when submitting an order to an e-commerce system.

A good page naming convention for this caseis"wi zard name.page nane" (aperiod separates the
two names). This visually identifies that several pages are related. In addition, a Java package for the
wizard should be created to contain the Java classes, component specifications, HTML templates and
other assets related to the wizard. Having the wizard name match the package name is also helpful.

The designer must also account for additional entry points to the application beyond the standard home
page. These may require additional application services (see below).

ldentify Common Logic

48

../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/engine/SimpleEngine.html
../api/org/apache/tapestry/IPageRecorder.html

Designing Tapestry Applications

Many applications will have common logic that appears on many pages. For example, an e-commerce
system may have a shopping cart, and have many different places where an item can be added to the
cart.

In many cases, the logic for this can be centralized in the visit object. The visit object may implement
methods for adding products to the shopping cart. This could take the form of Java methods, component
listeners.

In addition, most web applications have a concept of a'user'. The object representing the user should be
aproperty of the visit object, making it accessible to all pages and components.

Most Tapestry applications will involve some interaction with Enterprise JavaBeans. The code to lookup
home interfaces, or to gain access to ession beans, istypically located in the visit object.

Listener code, on various pages, will cast the visit object to the appropriate actual class and invoke
methods.

The following example demonstrates this idea. Visit is a hypothetical visit object that uses EJBs.

public void exanpl eLi st ener (| Request Cycl e cycl e)

{
Visit visit; O
| SomeHonel nt er f ace hone;

visit = (Visit)getVisit();
home = visit.get SomeHonel nterface();

try
{
/1 etc.

cat ch (Renot eExcepti on ex)

t hr ow new Appl i cati onRunti meExcepti on(ex);

0 Each application can freely define the type of the visit object, and its is common to call the class
"Visit". Another option isto create a subclass for the engine and store home interfaces there.

ldentify Engine Services

Tapestry applications will need to define new engine services when a page must be referenced from out-
side the Tapestry application

This is best explained by example. It is reasonable in an e-commerce system that there is a particular
page that shows product information for a particular product. This information includes description,
price, availability, user reviews, etc. A user may want to bookmark that page and return to it on a later
session.

Tapestry doesn't normally allow this; the page may be bookmarked, but when the bookmark is triggered,
the page may not render correctly, because it will not know which product to display. The URLS nor-
mally generated in a Tapestry application are very context sensitive; they are only meaningful in terms
of the user's navigation throughout the application, starting with the Home page. When bookmarked,

49

../api/org/apache/tapestry/IRequestCycle.html

Designing Tapestry Applications

that context is lost.

By defining a new engine service, the necessary context can be encoded directly into the URL, in away
similar to how the direct action works. This is partially a step backwards towards typical serviet or JSP
development, but even here Tapestry offers superior services. In the e-commerce example, the service
URL could encode some form of product identifier.

An example of thisisin the Virtual Library application. In order to make certain pages bookmarkable, a
new service named "external” was created.

The external service includes the name of a page and the primary key of an object that page displays
(this was simplified by the design of the Vlib entity beans, which always use an | nt eger as the

primary key).

The external service works much the same was as the page service, except that it invokes an additional
method on the page, set up() , which is passed the primary key extracted from the URL.

The end result is that when a user arrives at such a page, the URL used identifies the page and the
primary key. Bookmarking the page stores the URL so that when the bookmark is later opened, the cor-
rect datais read and displayed.

ldentify Common Components

Even before detailed design of an application, certain portions of pages will be common to most, if not
all, pages. The canonical example is a "navigation bar", a collection of links and buttons used to navig-
ate to specific pages within the application. An e-commerce site may have a shopping cart related com-
ponent that can appear in many places.

In many cases, common components may need to be parameterized: the navigation bar may need a para-
meter to specify what pages are to appear; the shopping cart component will require a shopping cart ob-
ject (the component is the view and controller, the shopping cart object isthe model).

Other examples of common components are viewers and editors of common data types.
In the Virtual Library, components that make use of the external service were created. The components,

BookLi nk and Per sonLi nk, took as parameters the corresponding objects (Book or Per son) and
created links to the pages that displayed the details of that Book or Per son.

50

Chapter 8. Coding Tapestry
Applications

After performing the design steps from the previous chapter, it is time to start coding. The designs will
imply certain requirements for the implementations.

Application Engine

Application engines will be serialized and de-serialized as part of load balancing and fail over. As much
as possible, attributes of the application object should be transient. For example, the instance variable
that holds the Appl i cat i onSpeci fi cati on istransient; if needed (after de-serialization), the en-
gine can locate the specification from its servlet (the servlet reads the application specification once,
when it isfirst initialized).

This is largely not an issue, since most applications use a provided class, such as Si npl eEngi ne.
Subclassing is only necessary when the application needs a different method of instantiating the visit ob-
ject, or needs to store additional data (see Operating Stateless). In some cases, it is convienient to create
a subclass to provide common component listener methods.

Visit Object

The visit object will contain all the data about a client's visit to the web application. If possible, it should
have a no-arguments constructor (this allows Si npl eEngi ne to instantiate it as needed).

Keeping the size of the serialized engine small is a good goa for overall performance and scalahility,
and the visit object is serialized with the engine. During initial development, the visit object should im-
plement thej ava. i 0. Seri al i zabl e interface.

Once the application, and the structure of the visit object, is stable, the more efficient
java.i o. External i zabl e interface should be implemented instead.

In addition, deferring the creation of the visit object aslate as possible is aso of benefit, since thisis the
best way to keep the serialized engine small.

Operating Stateless

Tapestry applications can operate in a stateless mode, that is, without aHt t pSessi on. The framework
automatically creates a session when needed; when the Visit object is first created, or when any persist-
ent page properties are changed.

Idedlly, the Hone page of the application should not trigger the creation of a session: it should be careful
not to create the Visit object. Remember that hits on your application will form a curve: The Horre page
is at the top of the curve, and it drops of rapidly as users penetrate deeper into the application ... how
many times have you visited the front page of aweb site and gone no further?

Stateless operations will affect Act i onLi nk, Di r ect Li nk and For mcomponents on your pages. By
default, they will reject requests while the application is running stateless; the user will be redirected to
the St al eSessi on page. Thisis appropriate, since normally, the lack of a session means that the pre-
vious session timed out and was discarded.

Each of these components hasa st at ef ul parameter which may be bound to f al se. When st at e-
f ul isfalse, the components will accept stateless requests.

51

../api/org/apache/tapestry/engine/SimpleEngine.html
../api/org/apache/tapestry/engine/SimpleEngine.html
../ComponentReference/ActionLink.html
../ComponentReference/DirectLink.html
../ComponentReference/Form.html

Coding Tapestry Applications

As the developer, you must keep a careful eye on what's stateful vs. stateless, and ook to move stateless
data into the engine, so as to avoid creating a visit object as long as possible. For example, the engine
can resolve and store EJB home interfaces and references to statel ess session EJBs. Even read-only data-
base data can be stored in the engine. However, anything that is related to a particular user must be
stored in the visit object (or a persistent page property).

It is also important to not accidentally create the visit object. Every page includes a vi si t property
which will create the visit if it doesn't already exist. This will, in turn, force the creation of an Ht -

t pSessi on. On the other hand, the property path engi ne. vi si t will not create the visit object. To
avoid creating the visit, you may need to wrap some of your HTML template inside a Condi t i onal

component whose condition parameter is bound to the property engi ne. vi si t .

Enterprise JavaBeans Support

The visit object should provide access to the most commonly used Enterprise JavaBeans used in the ap-
plication. It can provide a central location for the common code (related to JNDI and to narrowing EJB
references), rather than have that scattered throughout the application.

It is important to remember that EJB references are not serializable. However, it is possible to convert
between an EJB reference and an EJB handle, and handles are serializable. The visit should make any
instance variables that store EJB references transient, and should perform extra serialization work to
serialize and restore the necessary EJB handles.

Also remember that persistent page properties that are EJB references are automatically converted to
handles when stored, and back into references when restored.

Page classes

It is often useful to create one or two subclasses of BasePage specific to your application. Often your
application will have a consistent navigational border on some or all pages that can be supported by the
base class. Many applications have one set of pages that are visible to unidentified guests, and a second
section that is visible once the user logs in. A base class for the second set of pages could override the
val i dat e() method to redirect to alogin page if the user is not already logged in.

52

../ComponentReference/Conditional.html
../api/org/apache/tapestry/html/BasePage.html

Chapter 9. Designing new components

Creating new components using Tapestry is designed to be quite simple.

Components are typically created through aggregation, that is, by combining existing components using
an HTML template and specification.

Y ou will amost always want to define a short aias for your new component in the application specifica-
tion. This insulates devel opers from minor name changes to the component specification, such as mov-
ing the component to a different Java package.

Like pages, components should reset their state back to default values when the page they are contained
within is returned to the pool.

Most components do not have any state. A component which does should implement the
PageDet achLi st ener interface, and implement the pageDet ached() method.

The pageDet ached() method isinvoked from the page's det at ch() method, which is invoked at
the very end of the request cycle, just before the page is returned to the page pool.

Choosing a base class

There are two basic types of components:. those that use an HTML template, and those that don't.

Nearly all of the base components provided with the Tapestry framework don't use templates. They in-
herit from the class Abst ract Conmponent. Such components must implement the protected
r ender Conponent () method.

Components that use templates inherit from a subclass of Abst r act Conrponent : BaseConponent .
They should leave ther ender Conponent () method alone.

In some cases, a new component can be written just by combining existing components (this often in-
volves using inherited bindings). Such a codeless component will consist of just a specification and an
HTML template and will use the BaseConponent class without subclassing. This is even more pos-
sible when using helper beans.

Parameters and Bindings

You may create a component that has parameters. Under Tapestry, component parameters are a kind of
"named dot" that can be wired up as a source (or sink) of datain a number of ways. This"wiring up" is
actually accomplished using binding objects.

Connected Parameters
Most components use "in" parameters and can have Tapestry connect the parameters to

properties of the component automatically. This discussion reveals some inner workings of
Tapestry that developers most often no longer need to be aware of .

The page loader, the object that converts a component specification into an actual component, is re-
sponsible for creating and assigning the bindings. It uses the method set Bi ndi ng() to assign a bind-
ing with aname. Y our component can retrieve the binding by name using get Bi ndi ng() .

For example, lets create a component that allows the color of a span of text to be specified using a
j ava. awt . Col or object. The component has a required parameter named col or. The classs

53

../api/org/apache/tapestry/event/PageDetachListener.html
../api/org/apache/tapestry/AbstractComponent.html
../api/org/apache/tapestry/AbstractComponent.html
../api/org/apache/tapestry/BaseComponent.html
../api/org/apache/tapestry/BaseComponent.html

Designing new components

r ender Conponent () method is below:

prot ected voi d render Conponent (| Mar kupWiter witer, |RequestCycle cycle)
t hr ows Request Cycl eExcepti on

| Bi ndi ng col or Bi ndi ng = get Bi ndi ng("col or");
Col or col or = (Col or)col or Bi ndi ng. get bj ect ("col or”, Color.cl ass);
String encodedCol or = Request Cont ext. encodeCol or (col or);

witer.begin("font");
witer.attribute("color", encodedCol or);

render W apped(witer, cycle);

witer.end();

The call to get Bi ndi ng() isrelatively expensive, since it involves rummaging around in a Map and
then casting theresult from j ava. | ang. Cbj ect toor g. apache. t apestry. | Bi ndi ng.

Because bindings are typically set once and then read frequently by the component, implementing them
as private instance variables is much more efficient. Tapestry allows for this as an optimization on fre-
guently used components.

The set Bi ndi ng() method in Abst r act Conponent checks to see if there is a read/write Java
Beans property named "naneBinding" of type | Bi ndi ng. In this example, it would look for the meth-
odsget Col or Bi ndi ng() andset Col or Bi ndi ng() .

If the methods are found, they are invoked from get Bi ndi ng() and set Bi ndi ng() instead of up-
dating the Map.

This changes the example to:

private |Binding col orBinding;
public voi d set Col or Bi ndi ng(| Bi ndi ng val ue)

col or Bi ndi ng = val ue;

publ i c I Bi ndi ng get Col or Bi ndi ng()
{

return col orBi ndi ng;

}

protected void render Conponent (| MarkupWiter witer, |RequestCycle cycle)
t hrows Request Cycl eExcepti on

{

Col or col or = (Col or)col or Bi ndi ng. get Gj ect("col or", Color.cl ass);
String encodedCol or = Request Cont ext . encodeCol or (col or);

witer.begin("font");
witer.attribute("color", encodedCol or);

render W apped(witer, cycle);

../api/org/apache/tapestry/IMarkupWriter.html
../api/org/apache/tapestry/IRequestCycle.html
../api/org/apache/tapestry/IBinding.html
../api/org/apache/tapestry/RequestContext.html
../api/org/apache/tapestry/AbstractComponent.html
../api/org/apache/tapestry/IBinding.html
../api/org/apache/tapestry/IBinding.html
../api/org/apache/tapestry/IBinding.html
../api/org/apache/tapestry/IBinding.html
../api/org/apache/tapestry/IMarkupWriter.html
../api/org/apache/tapestry/IRequestCycle.html
../api/org/apache/tapestry/RequestContext.html

Designing new components

witer.end();

Thisis atrade off; dightly more code for slightly better performance. There is also a memory bonus; the
Map used by Abst r act Conponent to store the binding will never be created.

Persistent Component State

As with pages, individual components may have state that persists between request cycles. Thisis rare
for non-page components, but still possible and useful in specia circumstances.

A client that must persist some client state uses its page's changeQbser ver . It simply posts Cb-
servedChangeEvent s with itself (not its page) as the source. In practice, it still smply invokes the
fireQobservedChange() method.

In addition, the component should implement the interface PageDet achLi st ener, and implement

the method pageDet ached() , and, within that method, reset all instance variables to default values,
just as apage does (initsdet ach() method).

Component Assets

Tapestry components are designed for easy re-use. Most components consist of a specification, a Java
classand an HTML template.

Some components may need more; they may have additional image files, sounds, Flash animations,
QuickTime movies or whatever. These are collectively called "assets".

Assets comein three flavors: external, context and private.

» Anexterna asset isjust afancy way of packaging a URL at an arbitrary web site.

» A context asset represents a file with a URL relative to the web server containing the Tapestry ap-
plication.

* A private asset is afile within the classpath, that is, packaged with the component in a Java Archive
(JAR) file. Obviously, such assets are not normally visible to the web server.

Components which use assets don't care what flavor they are; they smply rely on the method
bui | dURL() to provide a URL they can incorporate into the HTML they generate. For example, the
| mage component has an image parameter that is used to build the sr ¢ attribute of an HTML <i ng>
element.

Assets figure prominently into three areas: reuse, deployment and localization.

Internal and private assets may be localized: when needed, a search occurs for alocalized version, relat-
ive to a base name provided in the component specification.

Private assets simplify both re-use and deployment. They allow a re-usable Tapestry component, even
one with associated images, style sheets (or other assets) to be incorporated into a Tapestry application
without any special consideration. For example, the standard exception page makes use of a private asset
to accessits stylesheet.

In atraditional web application, private assets would need to be packaged separately from the ‘compon-

55

../api/org/apache/tapestry/AbstractComponent.html
../api/org/apache/tapestry/event/PageDetachListener.html
../ComponentReference/Image.html

Designing new components

ent' code and placed into some pre-defined directory visible to the web server.

Under Tapestry, the private assets are distributed with the component specification, HTML templates
and Java code, within a Java Archive (JAR) file, or within the WVEB- | NF/ cl asses directory of aWeb
Application Archive (WAR) file. The resources are located within the running application's classpath.

The Tapestry framework takes care of making the private assets visible to the client web browser. This
occurs in one of two ways.

» The private assets are copied out of the classpath and to a directory visible to the web server. Thisre-
quires some additional configuration.

» The assets are dynamically accessed from the class path using the asset service.

Copying assets out of the classpath and onto the web site is the best solution for final deployment, since
it allows the assets to be retrieved as static files, an operation most web servers are optimized for.

Dynamically accessing assets requires additional operations in Java code. These operations are not
nearly as efficient as static access. However, dynamic access is much more convenient during develop-
ment since much less configuration (in this case, copying of assets) is necessary before testing the ap-
plication.

As with many things in Tapestry, the components using assets are blind as to how the assets are made
visible to the client.

Finally, every component has an asset s property that is an unmodifiable Map. The assets in the Map
are accessible as if they were properties of the Map. In other words, the property path as-
set s. wel come isvalid, if the component defines an asset named ‘welcome'.

56

Chapter 10. Tapestry and JavaScript

Building cutting edge Web applications is not entirely about the server side. A significant amount of
work must be done on the client side to support truly dynamic user experiences. Typically, this scripting
is done using the JavaScript language embedded into major web browsers such as Internet Explorer and
Netscape Navigator.

These effects range from simple effects such as image rollovers (changing the icon used for a link when
the cursor is over it) to more involved patterns such as client side validation of forms or even complex
animations.

In traditional, static web page development, the HTML producer (the person creating the static HTML
page) is completely responsible for this aspect of development, usually aided by a web page authoring
tool, such as Dreamweaver. Ultimately, though, the HTML producer assigns unique names or ids to
various elements on the page, and attaches JavaScript event handlersto the elements.

Example 10.1. Traditional JavaScript usage

var preload = new Array();

prel oad[0] = new | mage();

prel oad[0] .src = "/images/button. gif";

prel oad][1] = new | mage();

prel oad[1] . src = "/i mages/ button-hi ghlight.gif";

function rollover (i mage, index)

i mge.src = preload[index].src;

<a href="..."
onMouseOver ="j avascri pt:rol |l over (docunent. button, 1);"
onMouseQut ="j avascri pt:rol | over (docunent. button, 0);">
<i g nane="button" src="/inmges/button.gif">

</ a>

The preloading business is all about forcing the browser to load the image before it is needed, so that it
isaready in memory when the mouseover event handler needsiit.

From here, adding additional rollovers means extending the pr el oad array, providing names for the
additional <i ng> elements and writing the additional event handlers for the <a> elements.

Now, envision a running Tapestry application. With everything so dynamic (especially when you ac-
count for things like the For each component), it's all but impossible to even know how many links and
buttons will be on the page, never mind what they'll all be named. At first glance, it may appear that
Tapestry prevents the use of thiskind of scripting.

In fact, Tapestry is structured to enhance this kind of scripting. This is faciliated by the Body compon-
ent, which replaces the <body> element of the page. The next section described the services the Body
component povides to facilitate complex client-side scripting.

57

../ComponentReference/Foreach.html
../ComponentReference/Body.html
../ComponentReference/Body.html

Tapestry and JavaScript

The Body component

The Body component provides a number of services to the components it wraps. It handles preloading
of images. It provides the ability to add arbitrary JavaScript to the page, to include an external static
JavaScript document, or to add JavaScript to the <body> element's onload event handler. Finaly, it
provides an easy way to generate unique identifiers needed for things like image and function names.

When the Body component renders, it registers itself as an attribute of the | Request Cycl e. Thisal-
lows components wrapped by the Body component, directly or indirectly, to locate it and invoke meth-
ods on it. These methods are used to define preloaded images, and add JavaScript code to the response
HTML.

Figure 10.1. Body Component Rendering Sequence

body - Body cycle : wrapped
IReguestCycle IComponent
rendet(] setAttributel)

render(

getAttributel)

]

addOtherSeript()

LH remaoveAttributel)

When rendering is complete, the Body component will have produced four distinct portions of the

HTML response:
<scri pt |anguage="JavaScript" src="..."></script> [
<script |anguage="JavaScript"><!-- [

function tapestry onLoad() O

{
}

[l --> <[script>
<body onl oad="j avascri pt:tapestry_onLoad();"> O

1l
</ body>

58

../ComponentReference/Body.html
../ComponentReference/Body.html
../api/org/apache/tapestry/IRequestCycle.html
../ComponentReference/Body.html
../ComponentReference/Body.html

Tapestry and JavaScript

O Any number of included static scripts may be added to the page.

O Thisscript block is only emitted when necessary; that is, because some component needed to gen-
erate scripting or initialization (or preloaded images). The block is properly "commented" so that
older browsers, those that fail to support scripting, will not be confused by the JavaScript code.

0 Theonload event handler function is only generated if some component requests some onload ini-
tialization.

0 The<body> tag only specfiesaonl oad event handler function if one is needed.

O The content of the <body> element is defined by the Tapestry components it wraps. Importantly,
the rollovers, JavaScript, event handlers and the content are all generated in parallel (the Body
component uses buffering so that the JavaScript portion is written out first).

Script Specifications and Script Components

The Body component only lays the foundation for client-side JavaScript support in Tapestry. Tapestry
includes its own, XML-based language for create dynamic JavaScript.

A Tapestry Script Specification takes as input a number of symbols, each of which is a hamed object.
These input symbols are combined to form additional symbols. Additional XML tags allow a script to
place JavaScript into the main script body, or into the initialization.

The most common use for script specificationsis to add client-side behavior to form elements. The input
symbol is a form component, from this, the name of the element and containing form are determined.
Next, the name of one or more event handler functions are defined.

In the body, the functions are actualy created. In the initialization, the event handlers are wired to the
form and form elements.

In some cases, a script specification may produce usable output symbols (commonly, the names of a
JavaScript function that should be tied to some component's event handler).

Note
A detailed example is coming.

59

../ComponentReference/Body.html
../ComponentReference/Body.html

Chapter 11. The Tapestry Inspector

Tapestry includes a powerful tool: the Inspector, which reveals the construction of a running Tapestry
application.

Thel nspect or But t on component is used to include alink that launches the Inspector. Thisistypic-
aly included in the navigational border of an application, so that it is available to the developer from

any page. The Inspector itself is a page that is provided by the framework and available to any Tapestry
application.

Specification View

Figure 11.1. Inspector - Specification View

<} Tapestry Inspector: Primix Yirtual Library - Microsoft Internek Explorer

" pecifioation || Tenpate || Properties |[_ Enene |[lossve |

Component Specification

page o border - showlnspector

“MEmbedded Components

Assets

Hame Asset

The Inspector allows the devel oper to see how the page is constructed. It reveals the page's specification,
alist of embedded components within the page, the page's HTML template and more.

Itis possible to dig down and see the same information for any component within the page.

Template View

Figure 11.2. Inspector - Template View

60

../ComponentReference/InspectorButton.html

The Tapestry Inspector

rnet Explorer

= page o showError

The template view shows the HTML template for the component. Within the template, component refer-
ences are links that "dig down" into their template (if they have one).

Properties View

Figure 11.3. Inspector - Properties View

61

The Tapestry Inspector

=3 Tapestry Inspector: Primix Yirtual Library - Microsoft Internet Explorer

Persistent Properties

Component|Property Mame| Value Class Value

The properties view shows the persistent properties for the page and any components on the page.

Engine View

Figure 11.4. Inspector - Engine View

62

The Tapestry Inspector

3 Tapestry Inspector: Primix ¥irtual Library - Microsoft Internet Explorer

_

Application Engine
EnginefApplication Properties

Property

The engine view shows information about the running engine instance, including its name and class.

Not shown in the figure is the serialized state of the application engine (in a hex dump format) and a

long display of all the request cycle information (the same information produced when an uncaught ex-
ception isthrown).

Logging View

Figure 11.5. Inspector - Logging View

The Tapestry Inspector

apestry Inspector: Primix ¥irtual Library - Microsoft Internet Explorer

Category Logeing Level

The final tab allows control of the logging behavior of the application. It allows the logging level for any
category to be set, and allows new categories to be created.

Appendix A. Tapestry JAR files

[ib/runtime/*.jar
Frameworks that are usually needed at runtime (but not at framework build time) and are not always supplied
by the servlet container. This currently isjust the Log4J framework.

liblext/*.jar
Frameworks needed when compiling the framework and at runtime. This is several other Jakarta frameworks
(including BSF and BCEL), plus the OGNL framework.

tapestry-3.0.jar
The main Tapestry framework. Thisis needed at compile time and runtime. At runtime, it is most often added to
the servlet container's classpath. The framework release number isintegrated into the file name.

tapestry-contrib-3.0.jar
Contains additional components and tools that are not integral to the framework itself, such as the Pal et t e.
Needed at runtime if any such components are used in an application. The framework release number is integ-
rated into the file name.

In addition, Tapestry applications may need the packages

<class>javax.servlet</class>

and

<class>javax.xml.</class>

at compile time and an XML parser at runtime. These are usually provided by the servlet container or
application server.

65

http://jakarta.apache.org/log4j/
http://jakarta.apache.org
http://jakarta.apache.org/bsf/
http://jakarta.apache.org/bcel/
http://www.ognl.org
../ComponentReference/contrib.Palette.html

Appendix B. Tapestry Specification

DTDs

This appendix describes the four types of specifications used in Tapestry.

TableB.1. Tapestry Specifications

Type File Extension Root Element Public ID System ID
Application application <application> |-//Howard ht -
Lewi s Ship/ [tp://tapestry.
/ Tapestry Spe- |sf. net/dtd/ Tap
cification estry 1 3.dtd
1. 3//EN
Page page <page-specific |-//Howard ht -
ation> Lewi s Ship/ |tp://tapestry.
/ Tapestry Spe- |sf.net/dtd/ Tap
cification estry 1 3.dtd
1.3//EN
Component jwe <conponent - spe |-//Howard ht -
cification> Lewi s Ship/ |tp://tapestry.
[Tapestry Spe- [sf.net/dtd/ Tap
cification estry 1 3.dtd
1.3//EN
Library library <library-speci |-//Howard ht -
fication> Lewi s Ship/ |tp://tapestry.
| Tapestry Spe- [sf.net/dtd/ Tap
cification estry 1 3.dtd
1.3//EN
Script script <script> -/ Howar d ht -
Lewi s Ship/ |tp://tapestry.
/ Tapestry sf.net/dtd/ Tap
Script 1.2//EN |estry 1 2.dtd

The four general Tapestry specifications (<appl i cati on>, <conponent -specifi cati on>
<page-specification>and<library-specification>) al share the same DTD, but use
different root elements.

<appl i cati on> element

root element

The application specification defines the pages and components specific to a single Tapestry application.
It also defines any libraries that are used within the application.

FigureB.1. <appl i cati on> Attributes

66

Tapestry Specification DTDs

Name Type Required ? Default Value Description

name string yes User presentable
name of application.

engine-class string yes Name of an imple-
mentation of IEngine
to instantiate.

FigureB.2. <appl i cat i on> Elements

<descri ption>*,<property>*,
(<page> | <conponent - al i as>|<servi ce> |<l| i brary>|<ext ensi on>) *

<bean> element

Appearsin: <conponent - speci f i cati on>and <page- speci fi cati on>

A <bean> is used to add behaviors to a page or component via aggregation. Each <bean> defines a
named JavaBean that is instantiated on demand. Beans are accessed through the OGNL expression
beans. nane.

Once a bean isinstantiated and initialized, it will be retained by the page or component for some period
of time, specified by the bean's lifecycle.

bean lifecycle

none

The bean is not retained, a new bean will be created on each access.

age

The bean isretained for the lifecycle of the page itself.

render

The bean is retained until the current render operation completes. This will discard the bean when a page or
form finishes rewinding.

request

The bean isretained until the end of the current request.

Caution should be taken when using lifeycle page. A bean is associated with a particular instance of a
page within a particular JVM. Consecutive requests may be processed using different instances of the
page, possibly in different JVMs (if the application is operating in a clustered environment). No state
particular to a single client session should be stored in a page.

Beans must be public classes with a default (no arguments) constructor. Properties of the bean may be
configured using the <set - propert y>and <set - st ri ng- pr opert y> elements.

67

Tapestry Specification DTDs

Figure B.3. <bean> Attributes

Name Type Required ? Default Value Description

name string yes The name of the bean,
which must be a valid
Javaidentifier.

class string yes The name of the class
to instantiate.

lifecycle none| page| rend |no r equest As described above;

er| request duration that bean is

retained.

FigureB.4. <bean> Elements

<descri ption>*,<property>*,
(<set-property>|<set-string-property>)*

<bi ndi ng> element

Appearsin: <conponent >

FigureB.5. <bi ndi ng> Attributes

Binds a parameter of an embedded component to an OGNL expression rooted in its container.

In an instantiated component, bindings can be accessed with the OGNL expression bi ndi ngs. nane.

Name Type Required ? Default Value Description

name string yes The name of the para-
meter to bind.

expression string yes The OGNL expres-

sion, relative to the
container, to be bound
to the parameter.

<conf i gur e> element

Appearsin: <ext ensi on>

Allows a JavaBeans property of the extension to be set from a statically defined value. The
<conf i gur e> element wraps around the static value. The value is trimmed of leading and trailing

68

Tapestry Specification DTDs

whitespace and optionally converted to a specified type before being assigned to the property.

FigureB.6. <conf i gur e> Attributes

Name Type Required ? Default Value Description
property-name string yes The name of the ex-
tension property to
configure.
type bool ean|int]|lo |no String The conversion to ap-
ng| doubl e| Stri ply to the value.
ng

<conmponent > element

Appearsin: <conponent - speci fi cati on>and <page- speci fi cati on>
Defines an embedded component within a container (a page or another component).

In an instantiated component, embedded components can be accessed with the OGNL expression cont
ponents.id.

Figure B.7. <conponent > Attributes

Name

Type Required ? Default Value Description

string yes Identifier for the com-
ponent here and in the
component's templ ate.
Must be a valid Java
identifier.

type

string no A component type to
instantiate.

copy-of

string no The name of a previ-
oudy defined com-
ponent. The type and
bindings of that com-
ponent will be copied
to this component.

Either t ype or copy- of must be specified.

A component type is either a simple name or a qualified name. A simple name is the name of an com-
ponent either provided by the framework, or provided by the application (if the page or component is
defined in an application), or provided by the library (if the page or component is defined in alibrary).

A qualified nameis alibrary id, a colon, and a ssmple name of a component provided by the named lib-
rary (for example, contri b: Pal ett e). Library ids are defined by a <l i br ar y> element in the
containing library or application.

69

Tapestry Specification DTDs

Figure B.8. <conponent > Elements

<property>*,
(<bi ndi ng> | <fi el d- bi ndi ng>|<i nherit ed- bi ndi ng>|<stati c-bi ndi ng>|<string-bi ndi ng>)

<conponent - al i as> element

Appearsin: <appl i cati on>and<li brary-specification>

Defines a component type that may latter be used in a<conponent > element (for pages and compon-
ents also defined by this application or library).

FigureB.9. <conponent - al i as> Attributes

Name Type Required ? Default Value Description

type string yes A name to be used as
acomponent type.

specification-path string yes The complete re

source path to the
component's specific-
ation (including lead-
ing slash and file ex-
tension).

<conponent - speci fi cati on> element

root element

Defines a new component, in terms of its APl (<par anet er >s), embedded components, beans and as-
sets.

The sructure of a <conponent-specification> is vey smilaa to a
<page- speci ficati on> except components have additional attributes and elements related to

parameters.

FigureB.10. <conponent - speci fi cat i on> Attributes

Name Type Required ? Default Value Description

class string yes The Java class to in-
stantiate, which must
implement the inter-
face | Conponent.
Typicaly, this is
BaseConponent or

70

../api/org/apache/tapestry/IComponent.html
../api/org/apache/tapestry/BaseComponent.html

Tapestry Specification DTDs

Name Type Required ? Default Value Description

asubclass of it.

allow-body yes| no no yes
If yes, then any body
for this component,
from its containing
page or component's
template, is retained
and may be produced
using a Render-
Body component.

If no, then any body
for this component is
discarded.

allow-inform- yes| no no yes
al-parameters If yes, then any in-
formal parameters
(bindings that don't
match a formal para-
meter) specified here,
or in the component's
tag within its contain-
er's template, are re-
tained. Typicaly,
they are converted in-
to additional HTML
attributes.

If no, then informal
parameters are not al-
lowed in the specific-
ation, and discarded if
in the template.

FigureB.11. <conponent - speci fi cat i on> Elements

<descri pti on>*, <par anmet er > *, <r eser ved- par anet er > *, <property>*,
(<bean> | <conponent > | <ext er nal - asset > |<cont ext - asset > |<pri vat e- asset >)*

<cont ext - asset > element

Specifies an asset located relative to the web application context root folder. Context assets may be loc-
alized.

Assets for an instantiated component (or page) may be accessed using the OGNL expression
assets. nane.

71

../ComponentReference/RenderBody.html
../ComponentReference/RenderBody.html

Tapestry Specification DTDs

Figure B.12. <cont ext - asset > Attributes

Name Type Required ? Default Value Description

name string yes The name of the as-
set, which must be a
valid Javaidentifier.

path string yes The path to the asset,

assuming a root dir-
ectory matching the
servlet context root
directory. The path
should begin with
leading forward slash.

<descri pti on> element

Appears in: many

A description may be attached to a many different elements. Descriptions are used by an intelligent IDE
to provide help. The Tapestry Inspector may also display a description.

Note
The DTD supports multiple <descr i pt i on> elements, each localized to a different lan-

guage. In practice, a single description, in English, is typically used. This approach to
providing alocalized description is likely to change in the future, and it is probably safest
to expect just a single <descri pti on> tag to be alowed in the next revision of the
DTD.

The descriptive text appears inside the <descri pti on> tags. Leading and trailing whitespace is re-
moved and interior whitespace may be altered or removed. Descriptions should be short; external docu-
mentation can provide greater details.

FigureB.13. <descri pti on> element

Name

Type Required ? Default Value Description

xml:lang

string no The language the
message is localized
to as an 1SO language
string.

<ext ensi on> element

Appearsin: <appl i cati on>and<li brary-specification>

72

Tapestry Specification DTDs

Defines an extension, a JavaBean that is instantiated as needed to provide a global service to the applica-

tion.

FigureB.14. <ext ensi on> Attributes

Name Type Required ? Default Value

Description

name string yes

A name for the exten-
sion, which can (and
should) look like a
qualified class name,
but may also include
the dash character.

class string yes

The Java class to in-
stantiate. The class
must have a zero-
arguments construct-
or.

immediate yes| no no no

If yes, the extension
is instantiated when
the specification is
read. If no, then the
extension is not cre-
ated until first needed.

Figure B.15. <conponent - speci fi cat i on> Elements

<property>* <confi gure>*

<ext er nal - asset > element

Appearsin: <conponent - speci fi cati on>and <page- speci fi cati on>

Defines an asset at an arbitrary URL. The URL may begin with a slash to indicate an asset on the same
web server as the application, or may be a complete URL to an arbitrary location on the Internet.

External assets may be accessed at runtime with the OGNL expression asset s. nane.

Figure B.16. <ext er nal - asset > Attributes

Name Type Required ? Default Value Description

name string yes A name for the asset.
Asset names must be
valid Javaidentifiers.

URL string yes The URL used to ac-

73

Tapestry Specification DTDs

Name Type Required ? Default Value Description
cess the asset.

<fi el d- bi ndi ng> element

Appearsin: <conponent >

Binds a parameter of an embedded component to a public static final field.

Note
Although the same result can be accomplished using a <bi ndi ng> element and the

OGNL expression @| ass- name@ i el d- nane, using a<fi el d- bi ndi ng>ismore
efficient, because Tapestry knows that the valueis invariant.

The class name must be the qualified class name. If the package is ommitted, j ava. | ang is assumed
(this makes it easier to reference common fields such as Bool ean. TRUE).

In an instantiated component, bindings can be accessed with the OGNL expression bi ndi ngs. nane.

FigureB.17. <f i el d- bi ndi ng> Attributes

Name Type Required ? Default Value Description

name string yes The name of the para-
meter to bind.

field-name string yes The name of a public

static final field, in
the form cl ass-
nane. fi el d- nam
e.

<i nheri t ed- bi ndi ng> element

Appearsin: <conponent >
Binds a parameter of an embedded component to a parameter of its container.

In an instantiated component, bindings can be accessed with the OGNL expression bi ndi ngs. nane.

FigureB.18. <i nheri t ed- bi ndi ng> Attributes

Name Type Required ? Default Value Description

name string yes The name of the para-
meter to bind.

parameter-name string yes The name of a para-

74

Tapestry Specification DTDs

Name

Type

Required ?

Default Value

Description

meter of the contain-
ing component.

<l i brary>element

Appearsin: <appl i cati on>and<l i brary-specification>

Establishes that the containing application or library uses components defined in another library, and

sets the prefix used to reference those components.

FigureB.19. <l i br ar y> Attributes

Name

Type

Required ?

Default Value

Description

string

yes

The id associated
with the library. Com-
ponents within the
library can be refer-
enced with the com-
ponent type
i d: nane.

specification-path

string

yes

The complete re-
source path for the
library specification.

<| i brary-specification>element

root element

Defines the pages, components, services and libraries used by a library. Very similar to
<appl i cat i on>, but without attributes related application name or engine class.

The<l i brary-speci ficati on> element has no attributes.

FigureB.20.<l i brary-speci fi cati on> Elements

<descri ption>*,<property>*,
(<page> | <conponent - al i as>|<servi ce> |<l| i brary>|<ext ensi on>) *

<page> element

Appearsin: <appl i cati on>and<li brary-specification>

75

Tapestry Specification DTDs

Defines a page within an application (or contributed by alibrary). Relates alogical name for the page to
the path to the page's specification file.

FigureB.21. <page> Attributes

Name Type Required ? Default Value Description

name string yes The name for the
page, which must
start with a letter, and
may contain letters,
numbers, underscores
and the dash charac-
ter.

specification-path string yes The complete re-
source path to the

page's specification.

<page-speci fi cati on>element

root element

Defines a page within an application (or a library). The <page- speci fi cati on> is a subset of
<conponent - speci fi cat i on> with attributes and entities related to parameters removed.

FigureB.22. <page- speci fi cat i on> Attributes

Name Type Required ? Default Value Description

class string yes The Java class to in-
stantiate, which must
implement the inter-
face | Page. Typic-
aly, this is
BasePage or a sub-
class of it.

FigureB.23. <page- speci fi cat i on> Elements

<descri pti on>*,<property>*,
(<bean> | <conponent > | <ext er nal - asset > |<cont ext - asset > |<pri vat e- asset >)*

<par anet er > element

76

../api/org/apache/tapestry/IPage.html
../api/org/apache/tapestry/html/BasePage.html

Tapestry Specification DTDs

Appearsin: <conponent - speci fi cati on>

Defines aformal parameter of a component.

Figure B.24. <par anet er > Attributes

Name Type Required ? Default Value

Description

name string yes

The name of the para-
meter, which must be
avalid Javaidentifier.

javatype scalar name, or class|no
name

Required for connec-
ted parameters. Spe-
cifies the type of the
JavaBean property
that a connected para-
meter writes and
reads. The property
must match this exact
value, which can be a
fully specified class
name, or the name of
ascalar Javatype.

required yes| no no no

If yes, then the para-
meter must be bound
(though it is possible
that the binding's
value will still be
null).

property-name string no

For connected para
meters only; alows
the name of the prop-
erty to differ from the
name of the paramet-
er. If not specified,
the property name
will be the same as
the parameter name.

direction i n| form custom |no custom

Identifies the se
mantics of how the
parameter is used by
the component. cus-
tom the default,
means the component
explicitly controls
reading and writing
values through the
binding.

i n means the prop-
erty is set from the
parameter before the
component renders,
and is reset back to

77

Tapestry Specification DTDs

Name Type Required ? Default Value Description

default value after the
component renders.

f or m means that the
property is set from
the parameter when
the component
renders (as with i n).
When the form is sub-
mitted, the value is
read from the prop-
erty and used to set
the binding value
after the component
rewinds.

<privat e- asset > element

Specifies located from the classpath. These exist to support reusable components packages (as part of a
<li brary-specification>) packaged in aJAR. Private assets will be localized.

Assets for an instantiated component (or page) may be accessed using the OGNL expression
assets. nane.

FigureB.25. <pri vat e- asset > Attributes

Name Type Required ? Default Value Description

name string yes The name of the as-
set, which must be a
valid Javaidentifier.

resource-path string yes The path to the asset
on the classpath. The
path should begin
with leading forward
slash.

<pr operty> element

Appearsin: many

The <pr opert y> element is used to store meta-data about some other element (it is contained within).
Tapestr ignores this meta-data Any number of name/value pairs may be stored. The value is the static
text the <pr oper t y> tag wraps around.

Figure B.26. <pr oper t y> Attributes

78

Tapestry Specification DTDs

Name Type Required ? Default Value Description
name string yes The name of the prop-
erty.

<r eser ved- par anet er > element

Appearsin: <conponent - speci fi cati on>

Used in components that allow informal parameters to limit the possible informal parameters (so that
there aren't conflicts with HTML attributes generated by the component).

All formal parameters are automatically reserved.

Comparisons are caseless, so an informal parameter of "SRC", "sRc", etc., will match a reserved para-
meter named "src” (or any variation), and be excluded.

FigureB.27. <r eser ved- par anet er > Attributes

Name

Type Required ? Default Value Description

name

string yes The name of the re-
served parameter.

<servi ce> element

Appearsin: <appl i cati on>and<li brary-specification>
Definesan | Engi neSer vi ce provided by the application or by alibrary.

The framework provides several services (home, direct, action, external, etc.). Applications may over-
ride these services by defining different services with the same names.

Libraries that provide services should use a qualified name (that is, put a package prefix in front of the
name) to avoid name collisions.

Figure B.28. <ser vi ce> Attributes

Name Type Required ? Default Value Description

name string yes The name of the ser-
vice.

class string yes The complete class

name to instantiate.
The class must have a
zero-arguments con-
structor and imple-
ment the interface
| Engi neServi ce

79

../api/org/apache/tapestry/IEngineService.html
../api/org/apache/tapestry/IEngineService.html

Tapestry Specification DTDs

<set - property> element

Appearsin: <bean>

Allows a property of a helper bean to be set to an OGNL expression (evaluated on the containing com-
ponent or page).

Figure B.29. <set - pr oper t y> Attributes

Name Type Required ? Default Value Description

name string yes The name of the help-
er bean property to
Set.

expression string yes The OGNL expres-
sion used to set the

property.

<set-string-property>element

Appearsin: <bean>

Allows a property of a helper bean to be set to alocalized string value of its containing page or compon-
ent.

FigureB.30. <set - st ri ng- propert y> Attributes

Name Type Required ? Default Value Description

name string yes The name of the help-
er bean property to
Set.

key string yes A string property key
of the containing page
or component.

<st ati c- bi ndi ng> element

Appearsin: <conponent >

Binds a parameter of an embedded component to a static value. The value, which is stored as a string, is
the wrapped contents of the <st at i c- bi ndi ng> tag. Leading and trailing whitespace is removed.

In an instantiated component, bindings can be accessed with the OGNL expression bi ndi ngs. nane.

FigureB.31. <st at i c- bi ndi ng> Attributes

80

Tapestry Specification DTDs

Name Type Required ? Default Value Description
name string yes The name of the para-
meter to bind.

<stri ng- bi ndi ng> element

Appearsin: <conponent >
Binds a parameter of an embedded component to alocalized string of its containing page or component.

In an instantiated component, bindings can be accessed with the OGNL expression bi ndi ngs. nane.

FigureB.32. <st ri ng- bi ndi ng> Attributes

Name Type Required ? Default Value Description

name string yes The name of the para-
meter to bind.

key string yes The localized prop-
erty key to retrieve.

81

Appendix C. Tapestry Script
Specification DTD

Tapestry Script Specifications are frequently used with the Scri pt component, to create dynamic
JavaScript functions, typically for use as event handlers for client-side logic.

Theroot elementis<scri pt >.

A script specifcation is a kind of specialized template that takes some number of input symbols and
combines and manipulates them to form output symbols, as well as body and initialization. Symbols
may be simple strings, but are also frequently objects or components.

Script specifications use an Ant-like syntax to insert dynamic values into text blocks. ${ OGNL ex-
pressi on}. The expression is evaluated relative to a Map of symbols.

<body> element

<f or

Appearsin: <scri pt >

Specifies the main body of the JavaScript; this is where JavaScript variables and methods are typically
declared. This body will be passed to the Body component for inclusion in the page.

FigureC.1. <body> Elements

(text |<foreach>|<if>|<if-not>)*

each> element

Appears in: many

An element that renders its body repeatedly, much like a For each component. An expression supplies
acollection or array of objects, and its body is rendered for each element in the collection.

Figure C.2. <f or each> Attributes

Name Type Required ? Default Value Description

key string yes The symbol to be up-
dated with each suc-
cessive value.

expression string yes The OGNL expres-
sion which provides
the source of ele
ments.

82

../ComponentReference/Script.html
../ComponentReference/Body.html
../ComponentReference/Foreach.html

Tapestry Script Specification DTD

Figure C.3. <f or each> Elements

(text |<foreach>|<if>|<if-not>)*

<l f>element

Appears in: many

Conditionally renders its body, if a supplied OGNL expression istrue.

Figure C.4. <i f > Attributes

Name Type Required ? Default Value Description
expression string yes The OGNL expres-
sion to be evaluated.
Figure C.5. <i f > Elements
(t ext |<foreach>|<if>|<if-not>)*
<i f - not > element
Appears in: many
Conditionally renders its body, if asupplied OGNL expression isfalse.
FigureC.6. <i f - not > Attributes
Name Type Required ? Default Value Description
expression string yes The OGNL expres-
sion to be evaluated.

FigureC.7.<i f - not > Elements

(text |<foreach>|<if>|<if-not>)*

83

Tapestry Script Specification DTD

<i ncl ude-scri pt > element

Appearsin: <scri pt >

Used to include a static JavaScript library. A library will only be included once, regardless of how many
different scripts reference it. Such libraries are located on the classpath.

Figure C.8. <i ncl ude- scri pt > Attributes

Name Type Required ? Default Value Description
resource-path string yes The location of the
JavaScript library.

<inittialilzati on> element

Appearsin: <scri pt >
Defines initialization needed by the remainder of the script. Such initialization is placed inside a method

invoked from the HTML <body> element's onl oad event handler ... that is, whatever is placed inside
this element will not be executed until the entire page is loaded.

FigureC.9.<initializati on>Elements

(text |<foreach>|<if>|<if-not>)*

<I nput - synbol > element

Appearsin: <scri pt >

Defines an input symbol for the script. Input symbols can be thought of as parameters to the script. As
the script executes, it uses the input symbols to create new output symbols, redefine input symbols (not a
recommended practice) and define the body and initialization.

This element allows the script to make input symbols required and to restrict their type. Invalid input
symbols (missing when required, or not of the correct type) will result in runtime exceptions.

Figure C.10. <i nput - synbol > Attributes

Name Type Required ? Default Value Description

key string yes The input symbol to
be checked.

class string no If specified, thisisthe

Tapestry Script Specification DTD

Name Type Required ? Default Value Description

complete, quadlified
class name for the
symbol. The provided
symbol must be as
signable to this class
(be a subclass, or im-
plement the specified
class if the specified
classis actualy an in-
terface).

required yes | no no no If yes, then a non-
null value must be
specified for the sym-
bol.

<| et > element

Appearsin: <scri pt >

Used to define (or redefine) a symbol. The symbol's value is taken from the body of element (with lead-
ing and trailing whitespace removed).

Figure C.11. <| et > Attributes

Name Type Required ? Default Value Description
key string yes The key of the sym-
bol to define.

Figure C.12. <l et > Elements

(text |<foreach>|<if>|<if-not>)*

<scri pt > element

Root element

Theroot element of a Tapestry script specification.

FigureC.13. <scri pt > Elements

85

Tapestry Script Specification DTD

<i ncl ude- scri pt >*, <i nput - synbol > *,
(<l et >|<set >) *,
<body>?,<initialization>?

<set > element

Appearsin: <scri pt >

A different way to define a new symbol, or redefine an existing one. The new symbol is defined using

an OGNL expression.

Figure C.14. <set > Attributes

Name Type Required ? Default Value Description

key string yes The key of the sym-
bol to define.

expression string yes The OGNL expres-
sion to evaluate.

86

