Tapestry User's Guide
Howard Lewis Ship

Tapestry User's Guide
Howard Lewis Ship
Copyright © 2003-2004 The A pache Software Foundation

Table of Contents

O 1 g0 [1 o o P 1
AN OVEIVIAW OF TADESIIY .ttt ettt e ettt e e e e et e e e e et e e e eeannaeaees 1
Pages and COMPONENEScuu ittt et e et e et e e et e e et e e et e e et e e et e eeanaaenes 2
ENgines, ServiCeS and friENCdScuuiii e 3
Object Graph Navigation LanNQUAGEoveeueeeiieiiieeie e e e e e e e e e e s e e e et e e e e e ea e e st eeeneeannas 3

2. Page and component tEMPIEEESvvuuieiie e e e e e e e e e e e e e e e e 5
TEMPIAIE IOCALIONSeeee ettt e et e ettt e e et e e e aa s 5
TEMPIAIE CONLENES ... eete ettt ettt e ettt e ettt r e et et e et et e e e et e e e enaaes 5
ComponNENtS TN TEMPIALES ...t et e et e et e e e e eaanas 6

(071 070] 1= 01 B o0 o == 7
(0141070 18 =1 8o 8
SPECITYING PAIAIMELEIS ... ieiiieeie et e et e e e e e e e e e e e et e e e e e e e et e e et e eean e eenneeannaees 8
Formal and informal ParaMELErSuu it 9
TEMPIAIE TITECLIVES .. eeieeeeie et e e et e et e e e ann s 10
[0 lor= 2= 1o o H PPN 10
Bremoved JWCT O .. 11
BCONt NS JWCT O oovvviiiiiiiiiii 13

3. Creating Tapestry COMPONENESucveuuieete ettt terat e eei e eee e eeae e een e eat e eean e ean e eaneeannaeeaaeeaneraneeennns 15
010 1 1 o 15
CompPoNENt SPECITICALIONSvueieiite ettt ettt et e e et e e e e e eenans 17
COING COMPOMNENES ... eeeeet ettt et e et e et ettt e e et e e et e e et e e et e e e an e e et e aeteaebnaaeanaeees 17
COMPONENT PalaMELErS ...vuiiiiee ittt e e e e e e e e e e e e et e e e e eeanaen 18

L LS T a0 T g To 1 0TS 20
Connected Parameter PrOPErtiEScvueiiii e e e e e e e e e e e e e e e e aas 21
COmMPONENE LIDIBITES ..ottt et e e et e et e e eaans 23
Referencing Library COMPONENTSuuueiiiiiieiieiii et e et e et e e e e e eees 24
Library component Search Pathco..iieiiii e 24
USING PrIVAIE A SSELS ...iiiiiiiii et e e e e e e e e e e e e e e e 25
Library SPeCITiCAIONSuiieiiii e e e e e e e e e e e e e e eaes 25
Libraries and NAMESPACEScvvuuieeiiiei e e e et e e e e e e e e e e e s e e e e e e e e e e e eanaeenes 26

4. Managing SEIVEr-SIOE SLALEcieeei ettt ettt e 27
UNderstanding SENVIEE SLAIEc.uuuiiiiiie et 27
0o L= TP PPN 28
R =T o] =X P 28
Lo} o 7= o] o <o 29
Persistent PagE PrOPEITIESciee e et e et e e e e aa e 30
Implementing persistent page propertieSmanuallyoiiiiiiiiiiiii e 32
Manual persistent COmMPONENE PrOPEITIESvuueiiitiieeeeiii ettt e e et e et et e e et e e eare e eees 34
StALE €SS APPIICALIONSeee ettt ettt et e e ettt et e e e et e e ean e eeas 35

Lo Oo) 1T 11 1o T 1= - 36
L S 10T = 1 1= 1 PSP 36
AU o X0 = o1}V 0 1= 1100 =S o £ o) o] 36
Configuration SEArCHh Pathiiiiiiiiii e 38
APPIICALTON EXIENSIONSeieit ettt ettt e et e e et b e e e et e e e et e e e eaan s 40
O = o = S £ PP 41

A. TapeSIry ODJECE PrOPEITIESiee ittt e e e e e e e e e e e e e e e e e eaeees 43

I (YA A 1= 47

C. Tapestry SPeCIfiCation DTSc.uuiieiiiiii e e e e e e e e e e et e e e e e e e e e e e eennas 48
<APPl T Cat T ONZ ElOMENE .ooeeei et 48
SDEANS ElEMENT .o e aas 49
<DI NI NG> BOMEBNT ..o e e eas 50
<CONMPONENT > ElOMENE .ot e e e e et e r et e e e enns 51
<COMPONENt -t YPE> ElEMENT ..oiieii e e e e e e e e e e eees 51

Tapestry User's Guide

<conponent -specificati oN>eementccccouiiiiiiiiii 52
<CONT I QUI B3 BlBMENT oo e e e e 53
<CONt EXE - ASSEE > EEMENT ..o e 54
<AESCIi Pti ON> ElOMENE ..ooeieiiiii ettt et e e eenans 54
<EXE ENST ON> EBlEMENT ..o e et et e e e et e e eees 55
<external - aSSet > ElemMENT ... e 55
<i nherited-bindi NG> EEMENL ... 56
S B o 1= Y= = 0= | 56
<library-specificati on>eaementccccooiiiiiiiiiii 57
<listener-bindi Ng>EEMENt ... 57
<message- bi NAi NG> GEMENT ... e 57
SPAGE> BlEIMENT .o et eaas 58
<page-specificati ON> @emMentcooviiiiiii i 58
<paAr AMBL €5 > ElBMENT . oo e e 59
<SPrivat @-aSSet > EEMENT ... 61
SPrOPEIFTY > EBIEIMENT oottt et et eaaas 61
<property-specificati on>element ... 62
<reserved- paramet r > @eMENLiiiii e 63
ST AV R o b = 0T o PP 63
<set-nmessage- pProperty> element 64
<Sel - ProPErtY> EOMENE oot e 64
<stati C-Di NAi NG> EEMENT ..o 65
D. Tapestry Script SPECIfiCatiON DTDiiuiiiiiiieei e e e et e e e eanas 66
SDOAY > ElEMENE ...eeie e 66
<FOr@ACKHS ElEMENT ..o e 66
T = L= 07 | PP 67
I - N0t > G OMENT .o 67
<INCI UdE- SCIi PUS EEMENT ..t eaeas 68
<initializati OnN> EemMent ... e 68
<i NPUt - SYNMDOL > @@mMeNnt ... 68
L L > EOMENT oo e 69
=Y o ST o A = 1= 11 1= 0| 70
=Y =Y Al = 1= 00T o 70
SUNT QUES ElEIMENT ...ttt ettt e et e e e e e et et e et e ab e et et e e e et e eeenans 70

List of Figures

1.1. Tapestry request dispatch (Nigh TEVEL)coeeii e 2
2.1. Component templateS and DOTIEScuuiiiiiiiii e e 7
3.1. Core Tapestry Classes and INTEITACESccouuiiiiiii e 15
3.2, Parameter BiNGINGS ... oeeeiieiiiii ettt ettt ettt et e e e eaaas 19
3.3. REAAING @ PAIAIMELEY ittt e e e et e e et e e et e e et e e e e eeanns 20
BTV T o T W = = 1= 20
3.5. ParameterManager and r ender CoOmMPONENT () covvniiiiiiiii e e e e e 22
C.L . <appl i cati ON> AHIDULEScveeiiii e e e e e e e e e aaas 49
C.2.<appl i Cat i ON> EIBMENES ..oouiiiiiiii ettt e e eenans 49
ORI 01T Vo By AN 1] o101 (== P 50
O A o 1T Vg Bl =l 1= 0= | £ T PP UPPP 50
C.5.<bi NAi NG> ATHDULES ..oeeee e e e eaas 50
C.6. <CONMPONENT > ATIDULES L..vieiiiiii e e e e e e e e e e et e e e e eanaas 51
C.7. <CONMPONENT > ElBMENES .uiiiiiiii e e e e e e e e e e et e e e e anas 51
C.8.<conponent - t yPe> AIDULESuiiiiii et 52
C.9.<conponent - speci ficati on> AtrDULEScoouuiiiiiii e 52
C.10. <component - speci fi cati 0n> EleMentS ..o 53
C.11. <conf i QU @3 AHITDULEScouiieiii e e e e e e e e e eanas 53
C.12. <cont eXt - aSSet > AITDULES ...ooeveiiiii e 54
C.13. <eXt €NSi ON> AITDULES ...ooeii et e et e eeaa e e eaans 55
C.14. <component - speci fi cati onN> EleMeNtScccuuiiiiiiiiiiiiiiie e 55
C.15.<external - asset > AtDULEScoouiiiiiii e 55
C.16.<i nheri t ed- bi Ndi NG> AtHDULES ... 56
CA7.<ETDBrary> AHIDULEScouiiiii e e e e e e e et e e e eenas 56
C.l8.<library-specificati ON>EEMENScocviiiiiiii e 57
C.19.<listener-bi ndi N> AIDULESiiiiii e e e e e 57
C.20. <message- bi Ndi N> ALDULESooounii e 58
C.21. <page> AMNDULES ... e e 58
C.22.<page-speci ficati On> AUMDULESiiiiiii e 59
C.23. <page-specificati ON>EIemMENtSoiiiiiii e 59
C.24. <par amet r > AtHDULESciiiiii e 59
C.25.<privat @- aSSet > AHINDULEScvuiiiiiii e e e r e e 61
C.26. <Property> AMIDULEScoooiiii et eaans 61
C.27.<property-specificati on>AtrbULEScoouuiiiiii e 62
C.28.<reserved- paramet er > AUINDULESiiiiiii e 63
C.29. <SEr Vi Ce> AMIDULES ..ot 63
C.30.<set-nessage- property> AttbUESc.oiiiiiiii i 64
C.31l.<set-property>AtrBUIEScooeiiii 64
C.32.<stati c-bi NAi NG> ATHDULESenie e 65
(DI IR o T Lo Yl = 01T o1 PP 66
D.2. <f Or €aCh> AHIDULESeeiiii e e e e e e e e 66
D.3. < OF @ACKHS EIBMENES ...ttt e et et e e e eeanas 67
D AN 1 1] o 1= ORI 67
D AR I I = = 007 | £ PPIN 67
D.6. <i f-NOt > AtHDULES ... e e 67
(D AR I e o 1o} Al 1 44 | PP 68
D.8.<i ncl ude-scri pt > AttHDULESc.oni e 68
DO.<initializati on>EIEMENtS ..o 68
D.10. <i Nput - SYNMDOl > ARITDULES ...ovuiiiiie e e e e e e 69
D20 B I = A N (] o 1011 =SSP 69
[0 = = 03 o1 69
D.13. <SCIi Pt > EIBMENTS ...iiiiiieiiii et ettt et e et et e e e e et e e et ebe e e e eene e eeees 70
D.14. St > AMIHDULES ... e e 70

Vi

Tapestry User's Guide

D.15. <uni que> Elements

Vii

List of Tables

AL Tapestry ObjECE PrOPEITIESuiiiiieiiieii et e e et aeennaeeees
C.1L. TapeStry SPECITICAIONS .. cvvviieii e e e e e e e e e e et e e et e e e e e e e eennas

viii

List of Examples

2.1. Example HTML template contaiNing COMPONENESuuiiitieerieeeieeei e e e e e e et e e e e e e e eaneeaenees 6
2.2. HTML template with repetative blocks (Partial)covvveiiiiiiii e 11
2.3. Updated HTML template (Partial)c...eeieieiiiii et eeens 12
3.1. Referencing @ Component LibIaryoooeuueiiiiii e 24
4.2, AccesSING the VISIT ODJECE ... et e e e e e e e ea s 28
4.2. DEfINING TNE VISIT ClaSS ...ouuiitiii i e et e e e e e e e et e et e e e ans 29
4.3. Persistent page property: JAVACIASSiieue i 31
4.4. Persistent page property: page SPECITICAIONcovuiiiii e 31
45 . Useof initialize() Method ... e 32
4.6. Manual PersiStent PAgE PrOPEITYceuuu.eeeeei e eeett et et e ettt e et et e et e e et rb e e e e ab e e eaaa s 33
4.7. Manual Persistent Component PrOPEITIESc.uiiuuiiiieiii e et e e e e e aea s 34
5.1. Web Deployment DESCIIPIONivuiiiiiieii et e e e e e e e e e e e e e e eenas 36

Chapter 1. Introduction

Tapestry is a component-based web application framework, written in Java. Tapestry is more than a
simple templating system; Tapestry builds on the Java Servlet APl to build a platform for creating dy-
namic, interactive web sites. More than just another templating language, Tapestry is area framework
for building complex applications from simple, reusable components. Tapestry offloads much of the er-
ror-prone work in creating web applications into the framework itself, taking over mundane tasks such
as dispatching incoming requests, constructing and interpretting URL s encoded with information, hand-
ling localization and internationalization and much more besides.

The "mantra’ of Tapestry is "objects, methods and properties’. That is, rather than have developers con-
cerned about the paraphanlia of the Servlet API: requests, responses, sessions, attributes, parameters,
URLSs and so on, Tapestry focuses the developer on objects (including Tapestry pages and components,
but also including the domain objects of the application), methods on those objects, and JavaBeans prop-
erties of those objects. That is, in a Tapestry application, the actions of the user (clicking links and sub-
mitting forms) results in changes to object properties combined with the invocation of user-supplied
methods (containing application logic). Tapestry takes care of the plumbing necessary to connect these
user actions with the objects.

This can take some getting used to. You don't write servlets in Tapestry, you write listener methods.
You don't build URLSs to servlets either -- you use an existing component (such as Di r ect Li nk) and
configureits| i st ener parameter to invoke your listener method. What does a listener method do? It
interacts with backend systems (often, stateless session EJBs) or does other bookkeeping related to the
request and selects a new page to provide a response to the user ... basically, the core code at the center
of a servlet. In Tapestry, you write much less code because all the boring, mechanical plumbing
(creating URLSs, dispatching incoming requests, managing server-side state, and so forth) is the respons-
ibility of the framework.

Thisisnot to say the Servlet API isinaccessible; it issimply not relevant to atypical Tapestry user.

This document describes many of the internals of Tapestry. It is not atutorial, that is available as a sep-
arate document. Instead, this is a guide to some of the internals of Tapestry, and is intended for experi-
enced devel opers who wish to leverage Tapestry fully.

Tapestry is currently in release 3.0, and has come along way in the last couple of years. Tapestry's focus
is still on generating dynamic HTML pages, athough there's plenty of support for XHTML, WML and
other types of markup as well.

Nearly all of Tapestry's API is described in terms of interfaces, with default implementations supplied.
By substituting new objects with the correct interfaces, the behavior of the framework can be changed
significantly. A common example is to override where page and component specifications are stored
(perhaps in a database).

Finally, Tapestry boasts extremely complete JavaDoc APl documentation. This document exists to sup-
plement that documentation, to fill in gaps that may not be obvious. The JavaDoc is often the best refer-
ence.

An overview of Tapestry

Perhaps the hardest part of understanding Tapestry is the fact that it is component-centric not operation-
centric. Most web technologies (Struts, servlets, PHP, etc.) are operation-centric. Y ou create servlets (or
Act i ons, or what have you) that are invoked when a user clicks a link or submits aform. You are re-
sponsible for selecting an appropriate URL, and the name and type of any query parameters, so that you
can pass along the information you need in the URL.

You are also responsible for connecting your output pages (whether they are JSPs, Velocity templates,

1

../ComponentReference/DirectLink.html
http://jakarta.apache.org/struts/
http://jakarta.apache.org/velocity/

Introduction

or some other form of templating technology) to those operations. This requires you to construct those
URLs and get them into the hr ef attribute of your <a> tag, or into the acti on attribute of your
<f or > tag.

Everything is different inside Tapestry. Tapestry applications consist of pages, pages are constructed
from smaller components. Components may themselves be constructed from other components. Every
page has a unique name, and every component within a page has its own unique id ... this is a component
object model. Effectively, every component has an address that can easily be incorporated into a URL.

In practical terms, your don't write a servlet for the add- it em t o- shoppi ng- cart operation. In
fact, you don't even write an add- i t em t 0- shoppi ng- cart component. What you do is take an
existing component, such as Di r ect Li nk, and configure it. When the component renders, it will cre-
ate a callback URL. When you click that link, the callback URL (which includes the name of the page
and the id of the component within the page) will invoke a method on the component ... and that method
invokes your application-specific listener method. 1 Y ou supply just the listener method ... not an entire
servlet. Tapestry takes care that your listener method is invoked at the right time, under the right condi-
tions. Y ou don't have to think about how to build that URL, what data goesin the URL, or how to hook
it up to your application-specific code--that's all handled by the framework.

Figure 1.1. Tapestry request dispatch (high level)

Web Browser Serviet Container Tapestry page : IPage component : IComponent

T
| |
—l_ I

|
1

HTTP request

T
|
|
|
|
Handle request |

getM estedE lement(y

L 1

triggen)

———————— .

HTHML rezponze

T
|
. |
|
|

Tapestry uses a component object model to dispatch incoming requests to the correct page and compon-
ent.

Pages and components

Tapestry divides an application into a set of pages. Each page is assembled from Tapestry components.
Components themselves may be assembled from other components ... there's no artificial depth limit.

1 Listener methods in Tapestry are very similar in intent to delegates in C#. In both cases, a method of a particular object instance is represented
as an object. Calling thisa "listener" or a"listener method" is a bit of a naming snafu; it should be called a"delegate” and a " delegate method" but
the existing naming is too deeply entrenched to change any time soon.

../ComponentReference/DirectLink.html

Introduction

Tapestry pages are themselves components, but are components with some special responsibilities.

All Tapestry components can be containers of other components. Tapestry pages, and most user-defined
components, have a template, a special HTML file that defines the static and dynamic portions of the
component, with markers to indicate where embedded components are active. Components do not have
to have atemplate, most of the components provided with Tapestry generate their portion of responsein
code, not using a template.

Components may have one or more named parameters which may be set (or, more correctly, "bound")
by the page or component which contains them. Unlike Java method parameters, Tapestry component
parameters may be bidirectional; a component may read a parameter to obtain a value, or write a para-
meter to set avalue.

Most components are concerned only with generating HTML. A certain subset of components deal with
the flip-side of requests; handling of incoming requests. Link classes, such as PagelLi nk, Di r ect -
Li nk and Act i onLi nk, create clickable links in the rendered page and are involved in dispatching to
user-supplied code when such alink is triggered by clicking it.

Other components, For m and the form control components (Text Fi el d, PropertySel ecti on,
Checkbox, etc.), facilitate HTML forms. When such components render, they read properties from ap-
plication objects so as to provide default values. When the forms are submitted, the components within
the form read HTTP query parameters, convert the values to appropriate types and then update proper-
ties of application objects.

Engines, services and friends

Tapestry has evolved its own jargon over time.

The Engine is a central object, it occupies the same semantic space in Tapestry that the Ht t pSessi on
does in the Servlet API. The Engine is ultimately responsible for storing the persistent state of the ap-
plication (properties that exist from one request to the next), and this is accomplished by storing the En-
gineintothe Ht t pSessi on. This document will largely discuss the default implementation, with notes
about how the default implementation may be extended or overriden, where appropriate.

Engine services are the bridge between servlets and URLSs and the rest of Tapestry. Engine services are
responsible for encoding URLSs, providing query parameters that identify, to the framework, the exact
operation that should occur when the generated URL istriggered (by the end user clicking alink or sub-
mitting a form). Services are also responsible for dispatching those incoming regquests. This encapsula-
tion of URL encoding and decoding inside a single object is key to how Tapestry components can flex-
ibily operate without concern for how they are contained and on which page ... the services take into ac-
count page and location when formulating URLSs.

The Visit object is an application-defined object that acts as afocal point for al server-side state (not as-
sociated with any single page). Individual applications define for themselves the class of the Visit ob-
ject. The Visit is stored as a property of the Engine, and so is ultimately stored persistently in the Ht -
t pSessi on

The Global object is also application-specific. It stores information global to the entire application, inde-
pendent of any particular user or session. A common use for the Global object is to centralize logic that
performs JNDI lookups of session EJBs.

Object Graph Navigation Language

Tapestry is tightly integrated with OGNL, the Object Graph Navigation Language. OGNL is a Java ex-
pression language, which is used to peek into objects and read or update their properties. OGNL is simil-
ar to, and must more powerful than, the expression language built into the JSP 2.0 standard tag library.

../ComponentReference/PageLink.html
../ComponentReference/DirectLink.html
../ComponentReference/DirectLink.html
../ComponentReference/ActionLink.html
../ComponentReference/Form.html
../ComponentReference/TextField.html
../ComponentReference/PropertySelection.html
../ComponentReference/Checkbox.html
http://www.ognl.org

Introduction

OGNL not only support property access, it can include mathematical expressions and method invoca
tions. It can reference static fields of public classes. It can create new objects, including lists and maps.

The ssimplest OGNL expressions are property names, such asf 0o, which is equivalent to method get -
Foo() (or set Foo() if the expression is being used to update a property). The "Navigation” part
comes into play when the expression is a series of property names, such as f oo. bar . baz, which is
equivalent to get Foo() . get Bar (). get Baz() ... though care must always be taken that the inter-
mediate properties (f 0o and bar in this example) are not null.

OGNL is primarily used to alow two different objects (such as a page and a component contained by
that page) to share information.

Chapter 2. Page and component
templates

Unlike many other web frameworks, such as Struts or WebWork, Tapestry does not "plug into" an ex-
ternal templating system such as JavaServer Pages or Velocity. Instead, Tapestry integrates its own tem-
plating system.

Tapestry templates are designed to look like valid HTML files (component HTML templates will just be
snippets of HTML rather than complete pages). Tapestry "hides' its extensions into specia attributes of
ordinary HTML elements.

Don't be fooled by the terminology; we say "HTML templates' because that is the prevalent use of
Tapestry ... but Tapestry isequally adept at WML or XML.

Template locations

The general rule of thumb is that a page's HTML template is smply an HTML file, stored in the context

root directory. That is, you'll have a MyPage. ht M HTML template, a ViEB- | NF/ MyPage. page

page specification, and a My Page class, in some Java package.

Tapestry always starts knowing the name of the page and the location of the page's specification when it

searches for the page's HTML template. Starting with this, it performs the following search:

* Inthe same location as the specification

» Inthe web application's context root directory (if the page is an application page, not a page from a
component library)

In addition, any HTML template in the web application context is considered a page, even if thereis no
matching page specification. For simple pages that don't need to have any page-specific logic or proper-
ties, there's no need for a page specification. Such a page may still use the special Tapestry attributes
(described in the following sections).

Finally, with some minor configuration it is possible to change the extension used for templates. For ex-
ample, if you are developing a WML application, you may wish to name your files with the extension

Template Contents

Tapestry templates contain a mix of the following elements:

e Static HTML markup
* Tapestry components
e Localized messages

» Specia template directives

Usually, about 90% of a template is ordinary HTML markup. Hidden inside that markup are particular

5

http://jakarta.apache.org/struts/
http://opensymphony.com/webwork/
http://jakarta.apache.org/velocity/

Page and component templates

tags that are placeholders for Tapestry components; these tags are recognized by the presence of the
j wei d attribute. "JWC" is short for "Java Web Component", and was chosen as the "magic" attribute so
as not to conflict with any real HTML attribute.

Tapestry's parser is quite flexible, accepting all kinds of invalid HTML markup. That is, attributes don't
have to be quoted. Start and end tags don't have to balance. Case isignored when matching start and end
tags. Basically, thekind of ugly HTML you'll find "in the field" is accepted.

The goal is to alow you to preview your HTML templates using a WY SIWY G HTML editor (or even
an ordinary web browser). The editor will ignore the undefined HTML attributes (such asj wci d).

A larger goal isto support real project teams: The special markup for Tapestry is unobtrusive, even in-
visible. This allows an HTML designer to work on a template without breaking the dynamic portions of
it. Thisis completely unlike JSPs, where the changes to support dynamic output are extremelyobtrusive
and result in afile that is meaningless to an HTML editor.

Components in templates

Components can be placed anywhere inside atemplate, smply by adding thej wci d attribute to any ex-
isting tag. For example:

Example 2.1. Example HTML template containing components

<htm >
<head>
<title>Exanpl e HTML Tenpl ate</title>
</ head>
<body>
 [

Hel | o,
Joe User [

</ span>
</ body>
</htm >

0 Thisisareference to a declared component; the type and parameters of the component are in the
page's specification.

O Thisisaimplicit component; the type of the component is| nser t . The value parameter is bound
to the OGNL expression user . nane.

The point of all thisisthat the HTML template should preview properly inaWY SIWY G HTML editor.
Unlike Velocity or JSPs, there are no strange directives to get in the way of a preview (or necessitate a
special editting tool), Tapestry hides what's needed inside existing tags; at worst, it adds a few non-
standard attributes (such asj wei d) to tags. Thisrarely causes a problem with most HTML editors.

Templates may contain components using two different styles. Declared components are little more than
a placeholder; the type of the component is defined elsewhere, in the page (or component) specification.

Alternately, an implicit component can be defined in place, by preceding the component type with an
"@" symbol. Tapestry includes over forty components with the framework, additional components may
be created as part of your application, or may be provided inside a component library.

../ComponentReference/Insert.html
../ComponentReference/Insert.html
http://www.ognl.org
http://jakarta.apache.org/velocity/

Page and component templates

In the above example, a was used for both components. Tapestry doesn't care what tag is used
for a component, as long as the start and end tags for components balance (it doesn't even care if the
case of the start tag matches the case of the end tag). The example could just as easily use <di v> or
<f r ed>, the rendered page sent back to the client web browser will be the same.

Component bodies

In Tapestry, each component is responsible for rendering itself and its body. A component's body is the
portion of its page's template 1 that its tags encloses. The Tapestry HTML template parser is responsible
for dividing up the template into chunks: blocks of static HTML, component start tags (recognized by
the j wei d attribute) and matching component end tags. It is quite forgiving about case, quotes (which
may be single quotes, double quotes, or even omitted), and missing close tags (except for components,
which must be balanced).

Figure 2.1. Component templates and bodies

<html>
<head>
<title>Example HIML Template</titlex
</head>
<body>

Hellao,
<gpan jWweid="@Insert” wvalue="ggnl:user.name">Joe User

</body>
</html>

Page's @Insert's body
body border's

<html> ‘ Hello, ‘
<head>
<titlerExample HTML Template</title> [
</head>
<body>

<span jwcid="border":»

</body>
</html>

The template is broken into small chunks that are each slotted into a particular component's body.

In most cases, acomponent will make use of its body; it simply controlsif, when and how often its body
is rendered (when rendering the HTML response sent to the client). Other components, such as
I nsert, have no usefor their bodies, which they discard. Each component declaresin its own specific-
ation (theal | ow body attribute of the <conponent - speci fi cat i on>) whether isalows or dis-
cardsits body.

In the previous example, the | nser t component had a body, the text "Joe User". This supports WY Sl-

1 More correct would be to say "its container's template” as a component may be contained within another component. For simplicities sake, we'll
describe this asif it was always a simple two-level heirarchy even though practical Tapestry applications can be many levels deep.

7

../ComponentReference/Insert.html
../ComponentReference/Insert.html

Page and component templates

WY G preview; the text will be displayed when previewing. Since the | nsert component discards its
body, this text will not be used at runtime, instead the OGNL expression user . name will be evaluated
and the result inserted into the response.

No componentsin discarded blocks

. If you put a component inside the body of an | nsert (or any other component that dis-
cards its body), then Tapestry will throw an exception. Y ou aren't allowed to create a com-
ponent simply to discard it.

Component ids

Every component in Tapestry has its own id. In the above example, the first component has the id "bor-
der". The second component is anonymous; the framework provides a unique id for the component since
one was not supplied in the HTML template. The framework provided id is built from the component's
type; this component would have an id of $l nsert; other | nsert components would have ids
$l nsert $0, $I nsert $1, etc.

A component's id must only be unique within its immediate container. Pages are top-level containers,
but components can also contain other components.

Implicit components can also have a specific id, by placing theid in front of the "@" symbol:
Joe User </ span>

The component is still implicit; nothing about the component would go in the specification, but the id of
the component would be "insert".

Providing explicit ids for your components is rarely required, but often beneficial. It is especially useful
for form control components,

Each component may only appear once in the template. You simply can't use the same component re-
patedly ... but you can duplicate a component fairly easily; make the component a declared component,
then use the copy- of attribute of the <conponent > element to create clones of the component with
new ids.

Specifying parameters

Component parameters may always be specified in the page or component specification, using the
<bi ndi ng>, <st ati c- bi ndi ng> and <nessage- bi ndi ng> elements. Prior to Tapestry 3.0,
that was the only way ... but with 3.0, it is possible to specify parameters directly within the HTML tem-
plate.

Using either style of component (declared or implicit), parameters of the component may be bound by
adding attributes to the tag. Most attributes bind parameters to a static (unchanging) value, equivalent to
usingthe<st at i c- bi ndi ng> element in the specification. Static bindings are just the literal text, the
attribute value from the HTML template.

Prefixing an attribute value with ognl : indicates that the value is really an OGNL expression, equival-
ent to using the <bi ndi ng> element in the specification.

Finally, prefixing an attribute value with nessage: indicates that the value is really a key used to get a
localized message, equivalent to the <nessage- bi ndi ng> element in the specification. Every page,

../ComponentReference/Insert.html
../ComponentReference/Insert.html
../ComponentReference/Insert.html
../ComponentReference/Insert.html
http://www.ognl.org

Page and component templates

and every component, is alowed to have its own set of messages (stored in a set of . properties
files), and the mressage: prefix allows access to the localized messages stored in the files.

Seperation of Concerns
Before Tapestry 3.0, there was a more clear separation of concerns. The template could

only have declared components (not implicit), and any informal attributes in the template
were always static values. The type of the component and all its forma parameters were
always expressed in the specification. The template was very much focused on presenta-
tion, and the specification was very much focused on business logic. There were always
minor exceptions to the rules, but in general, seperation of concerns was very good.

With Tapestry 3.0, you can do more in the HTML template, and the specification file is
much less important ... but the seperation of concerns is much more blurred together. It is
very much acceptible to mix and match these approaches, even within a single page. In
general, when learning Tapestry, or when prototyping, it is completely appopriate to do as
much as possible in the HTML template. For large and complex applications, there are be-
nefits to moving as much of the dynamic logic as possible out of the template and into the
specification.

Formal and informal parameters

Components may accept two types of parameters: formal and informal. Formal parameters are those
defined in the component's specification, using the <par anmet er > element. Informal parameters are
additional parameters, beyond those known when the component was created.

The majority of components that accept informal parameters simply emit the informal parameters as ad-
ditional attributes. Why is that useful ? Because it alows you to specify common HTML attributes such
ascl ass ori d, or JavaScript event handlers, without requiring that each component define each pos-
sible HTML attribute (the list of which expands all the time).

If you are used to developing with JSPs and JSP tags, this will be quite a difference. JSP tags have the equi-
valent of formal parameters (they are called "tag attributes"), but nothing like informal parameters. Often are-
latively simply JSP tag must be bloated with dozens of extra attributes, to support arbitrary HTML attributes.

Informal and formal parameters can be specified in either the specification or in the template. Informal
parameters are not limited to literal strings, you may usetheognl : and nessage: prefixeswith them
aswell.

Not al components alow informal parameters; this is controlled by the al | ow i nform

al - par anet er s attribute of the <conponent - speci fi cat i on> element. Many components do
not map directly to an HTML element, those are the ones that do not allow informal parameters. If a
component forbids informal parameters, then any informal parameters in the specification or the tem-
plate will result in errors, with one exception: static strings in the HTML template are simply ignored
when informal parameters are forbidden; they are presumed to be there only to support WY SIWY G pre-
view.

Another conflict can occur when the HTML template specified an attribute that the component needs to
render itself. For example, the Di r ect Li nk component generates a <a> tag, and needs to control the
hr ef attribute. However, for preview purposes, it often will be written into the HTML template as:

. . .

../ComponentReference/DirectLink.html

Page and component templates

This creates a conflict: will the template hr ef be used, or the dynamically generated value produced by
the Di r ect Li nk component, or both? The answer is: the component wins. The hr ef attribute in the
template isignored.

Each component declares a list of reserved names using the <r eser ved- par anet er > element;
these are names which are not allowed as informa parameters, because the component generates the
named attribute itself, and doesn't want the value it writes to be overriden by an informal parameter.
Caseisignored when comparing attribute names to reserved names.

Template directives

For the most part, a Tapestry page or component template consists of just static HTML intermixed with
tags representing components (containing the j wei d attribute). The overarching goal is to make the
Tapestry extensions completely invisible.

Tapestry supports alimited number of additional directives that are not about component placement, but
instead address other concerns about integrating the efforts of HTML developers with the Java de-
velopers responsible for the running application.

Localization

Tapestry includes a number of localization features. An important part of which is to allow each page or
component to have its own catalog of localized messages (modeled after the Java Resour ceBundl e
class).

The page (or component) message catalog is a collection of . properti es files that are stored with
the page or component specification. They follow the same naming conventions as for Resour ce-
Bundl es, so component MyConponent (whose specification file is MyConponent . j we) might
have a default message file of MyConponent . properties, and a French trandation as My-
Conponent _fr. properties.

No global message catalog
1<
On oft-requested feature for Tapestry is to have a global message catalog, and a way to ac-

cess that catalog from the individual pages and components. This would alow common
messages to be written (and trandated) just once. This is a feature that may be added to
Tapestry 3.1.

Aswe've seen, it is possible to access the messages for a page or component using the nessage: pre-
fix on a component parameter (or use the <message- bi ndi ng> element in a page or component spe-
cification).

What about the static text in the template itself? How does that get translated? One possibility would be
to make use of the Insert component for each piece of text to be displayed, for example:

Hel | o</ span>

This snippet will get the hel | 0 message from the page's message catalog and insert it into the response.

10

../ComponentReference/DirectLink.html
../ComponentReference/Insert.html

Page and component templates

The text inside the tag is useful for WY SIWY G preview, but will be discarded at runtime in
favor of a message string from the catalog, such as "Hello", "Hola" or "Bonjour" (depending on the se-
lected locale).

Because, in an internationalized application, this scenario will occur with great frequency, Tapestry in-
cludes a special directive to perform the equivalent function:

Hel | o</ span>

Thisisnot an | nsert component, but behavesin a similar way. The tag used must be . You
do not usethe message: prefix on the message key (hel | 0). You can't use OGNL expressions.

Normally, the does not render, just the message. However, if you specify any additional attrib-
utes in the tag (such as, commonly, i d or cl ass to specify a CSS style), then the
will render around the message> For example, the template:

Invalid Access

might render as:

You do not have the necessary access.

In this example, the placeholder text "Invalid Access' was replaced with a much longer message ac-
quired from the message catal og.

In rare cases, your message may have pre-formatted HTML inside it. Normally, output isfiltered, so that
any reserved HTML characters in a message string are expanded to HTML entities. For example, a <
will beexpanded to &l t ; . If thisis not desired, add r aw="t r ue" tothe . This defeats the fil-
tering, and text in the message is passed through as-is.

$renove$ jweid

HTML templates in Tapestry serve two purposes. On the one hand, they are used to dynamically render
pages that end up in client web browsers. On the other hand, they allow HTML developers to use
WY SIWY G editors to modify the pages without running the full application.

We've already seen two ways in which Tapestry accomidates WY SIWY G preview. Informa component
parameters may be quietly dropped if they conflict with reserved names defined by the component.
Components that discard their body may enclose static text used for WY SIWY G prefix.

In some cases, we need even more direct control over the content of the template. Consider, for ex-
ample, the following HTML template:

Example 2.2. HTML template with repetative blocks (partial)

<t abl e>
<tr>
<t h>Fi rst Nanme</t h>

11

../ComponentReference/Insert.html

Page and component templates

<t h>Last Nane</t h>
</tr>
<tr jwcid="Ioop">
<t d>John</ span></t d>
/<td>Doe</ span></t d>
</[tr>
<tr>
<t d>Fr ank</t d>
<td>Sm t h</t d>
</[tr>
<tr>
<t d>Jane</t d>
<t d>Jones</td>
</tr>
</t abl e>

Thisis part of the HTML template that writes out the names of a list of people, perhaps from some kind
of database. When this page renders, the | oop component (presumably a For each, such details being
in the page's specification) will render its body zero or more times. So we might see rows for "Frank
Miller", "Alan Moore" and so forth (depending on the content of the database). However, every listing
will aso include "Frank Smith" and "Jane Jones" ... because the HTML developer left those two rowsin,
to ensure that the layout of the table was correct with more than one row.

Tapestry allows a special j wei d, $r enove$, for this case. A tag so marked is not a component, but is
instead eliminated from the template. It is used, asin this case, to mark sections of the template that are
just there for WY SIWY G preview.

Normally, $r enove$ would not be a valid component id, because it contains adollar sign.

With thisin mind, the template can be rewritten:

Example 2.3. Updated HTML template (partial)

<t abl e>
<tr>
<t h>Fi rst Nane</th>
<t h>Last Name</t h>
</tr>
<tr jwcid="Ioop">
<t d>John</ span></t d>
/<td>Doe</ span></t d>
</tr>
<tr jwcid="$renove$">
<t d>Fr ank</t d>
<td>Sm t h</td>
</[tr>
<tr jwcid="$renove$">
<t d>Jane</t d>
<t d>Jones</t d>
</tr>
</t abl e>

With the $r enpve$ blocks in place, the output is as expected, one row for each row read from the

12

../ComponentReference/Foreach.html

Page and component templates

database, and "Frank Smith" and "Jane Jones" nowhere to be seen.

. No componentsin removed blocks

It's not allowed to put components inside a removed block. This is effectively the same
rule that prevents components from being put inside discarded component bodies. Tapestry
will throw an exception if atemplate violatesthisrule.

$content$ jweid

In Tapestry, components can have their own templates. Because of how components integrate their own
templates with their bodies (the portion from their container's template), you can do alot ofn iteresting
things. It is very common for a Tapestry application to have a Border component: a component that pro-
duces the <ht ml >, <head>, and <body> tags (along with additional tags to reference stylesheets),
plus some form of navigational control (typically, a nested table and a collection of links and images).

Once again, maintaining the ability to use WY SIWY G preview is a problem. Consider the following:

<htm >
<head>
<title>Hone page</title>
<link rel ="styl esheet" href="style.css" type="text/css">
</ head>
<body>

<l-- Page specific content: -->
<formjwcid=". . .">
</ formp
</ span>
</ body>

It is quite common for Tapestry applications to have a Border component, a component that is used by
pages to provide the <ht Ml >, <head>, and <body> tags, plus common navigational features (menus,
copyrights, and so forth). In this example, it is presumed that the bor der component is a reference to
just such as component.

When this page renders, the page template will provide the <ht m >, <head> and <body> tags. Then
when the bor der component renders, it will again render those tags (possibly with different attributes,
and mixed in to much other stuff).

If we put a$r enpve$ on the <ht ml > tag in the page template, the entire page will be removed, caus-
ing runtime exceptions. Instead, we want to identify that the portion of the template inside the <body>
tag (on the page template) is the only part that counts). The $cont ent $ component id is used for this
purpose;

<htm >
<head>
<title>Hone page</title>
<link rel="styl esheet" href="style.css" type="text/css">

13

Page and component templates

</ head>
<body j wci d="$cont ent $" >

<l-- Page specific content: -->
<formjwcid=". . .">
</ form
</ span>
</ body>

The <body> tag, the text preceding its open tag, the </ body> tag, and the text following it are al re-
moved. It's asif the template consisted only of the tag for the bor der component.

14

Chapter 3. Creating Tapestry
components

Introduction

Tapestry is a component based web application framework; components, objects which implement the
| Conponent interface, are the fundamental building blocks of Tapestry. Additional objects, such as
the the engine, | Mar kupW i t er and the request cycle are infrastructure. The following figure identi-
fies the core Tapestry classes and interfaces.

Figure 3.1. Core Tapestry Classes and I nterfaces

15

../api/org/apache/tapestry/IComponent.html
../api/org/apache/tapestry/IMarkupWriter.html

Creating Tapestry components

winterfaces
IRequestCycle

+acivalel]
+getFPagel)
+getserviceParamelersy)

ginterfaces
IEngine
+getWist)
+get=iobal)
+zenice!)
+getlocaler)
+zellocaker)

zinterfaces
IMarkupVriter
+heginy)
+beginEmpty()
+aitributel)
+endi)
+print)
+printRaw ()

Tapestry components can be simple or complex. They can be specific to a single application or com-

winterfaces
IR ender

+render)

T

zinterfaces
IComponent

+getContainem)
+getPagel)
+getidy)
+getidPath()
+inishLoad]

T

vinterfaces
IPage

AbsztractComponant

+geflocak)
+getEngine()
+pelRequesiCyoe(])
+oelVisiy)
+oelEiobal)
+getPageiamel)

+atftach()
+alidate])
+detach()
+renderPager)

+getiestedComponent)

WprepareForRender)
HrenderComponenti)
HoleanupaterR ender)

BaszeC omponent

g

BazePage

pletely generic. They can be part of an application, or they can be packaged into a component library.

All the techniques used with pages work with components as well ... pages are a speciaized kind of
Tapestry component. This includes specified properties (including persistent properties) and listener

methods.

Components fit into the overall page rendering process because they implement the | Render interface.
Components that inherit from BaseConponent will use an HTML template. Components that inherit

16

../api/org/apache/tapestry/IRender.html
../api/org/apache/tapestry/BaseComponent.html

Creating Tapestry components

from Abst r act Conponent will render output in Java code, by implementing method r ender Com
ponent ().

The components provided with the framework are not special in any way: they don't have access to any

special APIs or perform any special down-casts. Anything a framework component can do, can be done
by your own components.

Component Specifications

Every component has a component specification, a file ending in . j wc whose root element is
<conponent - speci fi cati on>.

Each component's specification defines the basic characteristics of the component:

e The Javaclassfor the component (which defaultsto BaseConponent)

» Whether the component uses its body, or discards it (the al | ow body attribute, which defaults to
yes)

* Thename, type and other information for each formal parameter.

* Whether the component allows informal parameters or discards them (the al | ow i nf or m
al - par anet er s attribute, which defaultsto yes)

* Thenames of any reserved parameters which may not be used as informal parameters.

Beyond those additions, a component specification is otherwise the same as a
<page- speci fication>.

When a component is referenced in an HTML template (using the @'ype syntax), or in a specification
(asthet ype attribute of a <conponent > element), Tapestry must locate and parse the component's

specification (thisis only done once, with the result cached for later).

Tapestry searches for components in the following places:

» Asgpecifiedina<conponent - t ype> element (with the application specification)
* Inthe samefolder (typicaly, WEB- | NF) as the application specification

* In the VEEB- | NF/ ser vl et - nane folder (ser vl et - name is the name of the Tapestry Ap-
plicationServl et fortheapplication) 1

* |nthe VEB- | NF folder

* Intheroot context directory

Generally, the correct place is in the WEB- | NF folder. Components packaged into libraries have a dif-
ferent (and simpler) search.

Coding components

When creating a new component by subclassing Abstract Corponent, you must write the

1 Thisisavery rare option that will only occur when a single WAR file contains multiple Tapestry applications.

17

../api/org/apache/tapestry/AbstractComponent.html
../api/org/apache/tapestry/BaseComponent.html
../api/org/apache/tapestry/ApplicationServlet.html
../api/org/apache/tapestry/ApplicationServlet.html
../api/org/apache/tapestry/AbstractComponent.html

Creating Tapestry components

render Conponent () method. This method is invoked when the components container (typically,
but not always, a page) invokesitsownr ender Body() method.

protected voi d render Conponent (I Mar kupWiter witer, |RequestCycle cycle)
{

}

The | Mar kupW i t er object is used to produce output. It contains a number of pri nt () methods
that output text (the method is overloaded for different types). It also containspr i nt Raw() methods --
the difference being that pri nt () usesafilter to convert certain charactersinto HTML entities.

| Mar kupW i t er aso includes methods to simplify creating markup style output: that is, elements
with attributes.

For example, to create a<a> link:

witer.begin("a");
witer.attribute("url", url);
witer.attribute("class", styled ass);

render Body(witer, cycle);

witer.end(); // close the <a>

The begi n() method renders an open tag (the <a>, in this case). The end() method renders the cor-
responding a. Asyou can see, writing attributes into the tag is very ssmple.

The cal to render Body() is used to render this component's body. A component doesn't have to
render its body; the standard | mage component doesn't render its body (and its component specification
indicates that it discards its body). The Condi ti onal component decides whether or not to render its
body, and the For each component may render its body multiple times.

A component that allows informal parameters can render those as well:

writer. begi nEnpty("ing");
witer.attribute("src", inmgeURL);
render | nf or mal Par aneters(witer, cycle);

This example will add any informal parameters for the component as additional attributes within the
<i ng> element. These informal parameters can be specified in the page's HTML template, or within the
<conponent > tag of the page's specification. Note the use of the begi nEnpt y() method, for creat-
ing a start tag that is not balanced with an end tag (or acall to theend() method).

Component Parameters

A Tapestry page consists of a number of components. These components communicate with, and co-
ordinate with, the page (and each other) via parameters.

A component parameter has a unique name and a type (a Java class, interface, or primitive type name).
The <par anet er > component specification element is used to define formal component parameters.

18

../api/org/apache/tapestry/IMarkupWriter.html
../api/org/apache/tapestry/IRequestCycle.html
../api/org/apache/tapestry/IMarkupWriter.html
../api/org/apache/tapestry/IMarkupWriter.html
../ComponentReference/Image.html
../ComponentReference/Conditional.html
../ComponentReference/Foreach.html

Creating Tapestry components

In atraditional desktop application, components have properties. A controller may set the properties of a
component, but that'sit: properties are write-and-forget.

The Tapestry model is a little more complex. A component's parameters are bound to properties of the
enclosing page. The component is allowed to read its parameter, to access the page property the para-
meter is bound to. A component may also update its parameter, to force a change to the bound page

property.

The vast majority of components simply read their parameters. Updating parameters is more rare; the
most common components that update their parameters are form control components such as Text -
Fi el d or Checkbox.

Because bindings are in the form of OGNL expressions, the property bound to a component parameter
may not directly be a property of the page ... using a property sequence allows great flexibility.

Figure 3.2. Parameter Bindings

ShoppingCart Page

| HTML template -l
linetem I |
| |
| iTa{tField |
Lingltem == =quantity: —:—- | R I— - | |
| | |
product I Ingert |

......... NAME + — + — ¢ — v o v e o v o

|

y | |
Product ' | |

Using OGNL, the Text Fi el d component's val ue parameter is bound to the Li nel t ems quant -
ity property, using the OGNL expression | i nel tem quantity, and the | nsert component's
val ue parameter is bound to the Product's name property using the OGNL expression
[i nel tem product. name.

Not all parameter bindings are writable. So far, the examples have been for parameters bound using the
<bi ndi ng> specification element (or the equivalent use of the ognl : prefix in an HTML template).
Invariant bindings are also possible--these are bindings directly to fixed values that never change and
can't be updated. The <st ati c- bi ndi ng> element is invariant; it's HTML template equivalent is a
attribute with no prefix. Likewise, the <message- bi ndi ng> element, and the message: prefix on
an attribute, are invariant.

19

../ComponentReference/TextField.html
../ComponentReference/TextField.html
../ComponentReference/Checkbox.html
http://www.ognl.org
http://www.ognl.org
../ComponentReference/TextField.html
../ComponentReference/Insert.html

Creating Tapestry components

Using Bindings

To understand how Tapestry parameters work, you must understand how the binding objects work (even
though, as well see, the binding objects are typically hidden). When a component needs access to a
bound parameter value, it will invoke the method get Cbj ect () onl Bi ndi ng

Figure 3.3. Reading a Parameter

component : |Component binding : IBinding page

| | |
| | |
' I Evaluate DGNL :

.k] ! expression
getObject() | I
ol — [
= I

-
- I
read property :
.::_ __________

T
I
|
Theget Obj ect () method on | Bi ndi ng will (if the binding is dynamic) evaluate the OGNL expres-

sion (provided in the <bi ndi ng> specification element) to access a property of the page. The result is
that cast or otherwise coerced to atype useful to the component.

Updating a parameter is the same way, except that the method is set Qbj ect () . Most of the imple-
mentations of | Bi ndi ng (those for literal strings and localize messages), will throw an exception im-
mediately, since they are invariant.

Figure 3.4. Writing a Parameter

20

../api/org/apache/tapestry/IBinding.html
../api/org/apache/tapestry/IBinding.html
../api/org/apache/tapestry/IBinding.html

Creating Tapestry components

component : |Component binding : |Binding page
| | I
| | I
: : Evaluate OGNL :
— ression
setObject() | = I
] — I
= I
-~
- I
read property :
I
ke |
I
I
I
I

T
I
I
Theset Obj ect () method will use OGNL to update a page property.

These flows are complicated by the fact that parameters may be optional; so not only do you need to ac-
quire the correct binding object (method get Bi ndi ng() defined in | Conponent), but your code
must be prepared for that object to be null (if the parameter is optional).

Connected Parameter Properties

Accessing and manipulating the | Bi ndi ng objects is tedious, so Tapestry has an alternate approach.
Parameters may be represented as connected parameter properties that hide the existence of the binding
objects entirely. If you component needs to know the value bound to a parameter, it can read the connec-
ted parameter property. If it wants to update the property bound to the parameter, the component will
update the connected parameter. Thisisamuch more natural approach, but requires alittle bit of setup.

As with specified properties, Tapestry will fabricate an enhanced subclass with the necessary instance
variables, accessor methods, and cleanup code.

Connected parameters are controlled by the di r ect i on attribute of the <par amet er > element. 2
There are four values: i n, f or m aut o and cust om The default is cust om which does not create a
connected parameter property at all.

Direction: in
The majority of component parameters are read-only, and are only actually used within the component's
r ender Conponent () method ... the method that actually produces HTML output. For such compon-

ents, direction i n isthe standard, efficient choice.

The connected parameter for each component is set just beforer ender Conponent () isinvoked. The
parameter isreset toitsinitia value just after r ender Conponent () isinvoked.

Each component has a Par anet er Manager , whose responsibility is to set and reset connected para-
meter properties.

2 The name, "direction”, made sense initialy, but is now ahit confusing. It probably should have been called "processing” or "connection-type".

21

../api/org/apache/tapestry/IComponent.html
../api/org/apache/tapestry/IBinding.html

Creating Tapestry components

Figure 3.5. ParameterManager and r ender Conponent ()

component : |IComponent manager : Pammeterd anager binding : 1Binding

[|

I I

| |

I I

render() | |

. I I

I I

I I

prepareForRender() : :

=P arameter=() I I

| |

get0 bject() I

parameter value]_|

T |

=&t property '

I

___________ || I

— | |

Ll I |

:; [|

— : :

I I

renderC ompenent() : :

[' '

- | |

:J [|

— : :

I I

> cleanupafterf ender) : :
—

re=etParameters() I I

o | I

=&t property :

A |

___________ I

f— | |

- [|

_— | |

—_—— 4 | |

I I

_______ I I

e | |

I I

I I

[|

| |

The Par anet er Manager will read the values bound to each parameter, and update the connected
parameter property before the component's r ender Conponent () method is invoked. The Par a-
nmet er Manager cleans up after r ender Conponent () isinvoked.

22

Creating Tapestry components

For invariant bindings (literal strings and such), the ParameterManager will only set the connected para-
meter property once, and does not reset the property after r ender Conponent () .

Warning

If your component has any listener methods that need to access a parameter value, then
you can't use direction i n (or direction f or). Listener methods are invoked outside of
the page rendering process, when value stored in the connected parameter property is not
set. You must use direction aut o or cust omin such cases.

Direction: form

Components, such as Text Fi el d or Checkbox, that produce form control elements are the most
likely candidates for updating their parameters. The read a parameter (usually named val ue) when they
render. When the form is submitted, the same components read a query parameter and update their
val ue parameter.

The f or mdirection simplifiesthis. For the most part, f or misthe same asi n. The diffferenceis, when
the form is submitted, after the component's r ender Conrponent () method has been invoked, the
connected parameter property is read and used to update the binding (that is, invoke the binding object's
set Obj ect () method).

Direction: auto

The previous direction values, i n and f or m have limitations. The value may only be accessed from
within the component's r ender Conponent () method. That's often insufficient, especially when the
component has a listener method that needs access to a parameter.

Direction aut o doesn't use the Par anet er Manager . Instead, the connected parameter property is
synthetic. Reading the property immediately turns around and invokes | Bi ndi ng's get Obj ect ()
method. Updating the property invokesthe | Bi ndi ng'sset Qbj ect () function.

This can be a bit less efficient than direction i n, as the OGNL expression may be evaluated multiple
times. In Tapestry 3.0, the parameter must also be required. Future releases of Tapestry will relax these
limitations.

Removing parameter directions
G g
Parameter directions are a bit of a sore spot: you must make too many decisions about how

to use them, especially in terms of render-time-only vs. listener method. Direction aut o is
too limited and possibly too inefficient. Tapestry 3.1 should address these limitations by
improving direction aut o. Instead of specifying a direction, you'll specify how long the
component can cache the value obtained from the binding object (no caching, or only
while the component is rendering, or until the page finishes rendering).

Direction: custom

The cust omdirection, which is the default, does not create a connected parameter property. Y our code
is still responsible for accessing the | Bi ndi ng object (via the get Bi ndi ng() method of | Com
ponent) and for invoking methods on the binding object.

Component Libraries

Tapestry has a very advanced concept of a component library. A component library contains both

23

../ComponentReference/TextField.html
../ComponentReference/Checkbox.html
../api/org/apache/tapestry/IBinding.html
../api/org/apache/tapestry/IBinding.html
http://www.ognl.org
../api/org/apache/tapestry/IBinding.html
../api/org/apache/tapestry/IComponent.html
../api/org/apache/tapestry/IComponent.html

Creating Tapestry components

Tapestry components and Tapestry pages (not to mention engine services).

Referencing Library Components

Before a component library may be used, it must be listed in the application specification. Often, an ap-
plication specification is only needed so that it may list the libraries used by the application. Libraries
areidentified using the<l i br ar y> element.

The <l i br ar y> element provides an id for the library, which is used to reference components (and
pages) within the library. It also provides a path to the library's specification. Thisis a complete path for
a. library fileon the classpath. For example:

Example 3.1. Referencing a Component Library

<appl i cati on nane="Exanpl e Application">
<library id="contrib" specification-path="/org/apache/tapestry/contrib/Contrib.|

</ application>

In this example, Contri b. |i brary defines a set of components, and those component can be ac-
cessed using cont ri b: asaprefix. Inan HTML template, this might appear as:

This example defines a component with id pal et t e. The component will be an instance of the Palette
component, supplied within the cont ri b component library. If an application uses multiple libraries,
they will each have their own prefix. Unlike JSPs and JSP tag libraries, the prefix is set once, in the ap-
plication specification, and is used consistently in all HTML templates and specifications within the ap-
plication.

The same syntax may be used in page and component specifications:

<conponent id="palette" type="contrib: Palette">

</ boﬁpbnent >

Library component search path

Previously, we described the search path for components and pages within the application. The rules are
somewhat different for components and pages within alibrary.

Tapestry searches for library component specifications in the following places:

» Asgpecifiedina<conponent - t ype> element (with the library specification)

24

Creating Tapestry components

* Inthe same package folder asthe library specification

The search for page specifications is identical: as defined in the library specification, or in the same
package folder.

Using Private Assets

Often, a component must be packaged up with images, stylesheets or other resources (collectively
termed "assets') that are needed at runtime. A reference to such an asset can be created using the
<pri vat e- asset > element of the page or component specification. For example:

<privat e-asset nane="| o0go" resource-path="inmages/| ogo 200. png"/ >

<component id="imge" type="Imge" >
<bi ndi ng nanme="i nage" expressi on="assets. | ogo"/>
</ conponent >

All assets (private, context or external) are converted into instances of | Asset and treated identically
by components (such as | mage). Asin this example, relative paths are allowed: they are interpreted rel-
ative to the specification (page or component) they appear in.

The Tapestry framework will ensure that an asset will be converted to a valid URL that may be refer-
enced from a client web browser ... even though the actual service isinside a JAR or otherwise on the
classpath, not normally referenceable from the client browser.

The default behavior is to serve up the localized resource using the asset service. In effect, the frame-
work will read the contents of the asset and pipe that binary content down to the client web browser.

An alternate behavior is to have the framework copy the asset to afixed directory. This directory should
be mapped to a know web folder; that is, have a URL that can be referenced from a client web browser.
In this way, the web server can more efficiently serve up the asset, as a static resource (that just happens
to be copied into place in ajust-in-time manner).

This behavior is controlled by a pair of configuration properties:
org. apache. tapestry. asset. dir andor g. apache. t apestry. asset. URL.

Library Specifications

A library specificationisafilewitha. | i br ary extension. Library specifications use aroot element of
<library-specification> which supports a subset of the attributes allowed within an
<appl i cati on> element (but allowing the same nested elements). Often, the library specification is
an empty placeholder, used to an establish a search location for page and component specifications:

<I DOCTYPE | i brary-specificati on PUBLIC
"-// Apache Software Foundation// Tapestry Specification 3.0//EN'
"http://jakarta. apache. org/tapestry/dtd/ Tapestry 3 0.dtd">

<li brary-specification/>

25

../api/org/apache/tapestry/IAsset.html
../ComponentReference/Image.html

Creating Tapestry components

It is allowed that components in one library be constructed using components provided by another lib-
rary. The referencing library's specification may contain <l i br ar y> elements that identify some other
library.

Libraries and Namespaces

Tapestry organizes components and pages (but not engine services) into namespaces. Namespaces are
closely related to, but not exactly the same as, the library prefix established using the <l i br ar y> ele-
ment in an application or library specification.

Every Tapestry application consists of a default namespace, the application namespace. This is the
namespace used when referencing a page or component without a prefix. When a page or component
can't be resolved within the application namespace, the framework namespaceis searched. Only if the
component (or page) is not part of the framework namespace does an error result.

In fact, it is possible to override both pages and components provided by the framework. This is fre-
quently used to change the look and feel of the default StateSession or Exception page. In theory, it is
even possible to override fundamental componentssuch asl nsert or For each!

Every component provides a nanespace property that defines the namespace (an instance of | N-
anespace) that the component belongs to.

You rarely need to be concerned with namespaces, however. The rare exception is when a page from a
library wishes to make use of the PageLi nk or Ext er nal Li nk components to create alink to anoth-
er page within the same namespace. Thisis accomplished (in the source page's HTML template) as:

 ...

26

../ComponentReference/Insert.html
../ComponentReference/Foreach.html
../api/org/apache/tapestry/INamespace.html
../api/org/apache/tapestry/INamespace.html
../ComponentReference/PageLink.html
../ComponentReference/ExternalLink.html

Chapter 4. Managing server-side state

Server-side state is any information that exists on the server, and persists between requests. This can be
anything from a single flag all the way up to alarge database result set. In a typical application, server-
side state is the identity of the user (once the user logs in) and, perhaps, a few important domain objects
(or, at the very least, primary keys for those objects).

In an ordinary servlet application, managing server-side state is entirely the application's responsibility.
The Servlet API provides just the Ht t pSessi on, which acts like a Map, relating keys to arbitrary ob-
jects. It is the application's responsibility to obtain values from the session, and to update values into the
session when they change.

Tapestry takes a different tack; it defines server-side state in terms of the Engine, the Visit object, and
persistent page properties.

Understanding servlet state

Managing server-side state is one of the most complicated and error-prone aspects of web application
design, and one of the areas where Tapestry provides the most benefit. Generally speaking, Tapestry ap-
plications which are functional within a single server will be functiona within a cluster with no addi-
tional effort. This doesn't mean planning for clustering, and testing of clustering, is not necessary; it just
means that, when using Tapestry, it is possible to narrow the design and testing focus.

The point of server-side state is to ensure that information about the user acquired during the session is
available later in the same session. The canonical example is an application that requires some form of
login to access some or al of its content; the identify of the user must be collected at some point (in alo-
gin page) and be generally available to other pages.

The other aspect of server-side state concerns failover. Failover is an aspect of highly-available comput-
ing where the processing of the application is spread across many servers. A group of servers used in
thisway isreferred to as a cluster. Generally speaking (and this may vary significantly between vendor's
implementations) requests from a particular client will be routed to the same server within the cluster.

In the event that the particular server in question fails (crashes unexpectedly, or otherwise brought out of
service), future requests from the client will be routed to a different, surviving server within the cluster.
This failover event should occur in such a way that the client is unaware that anything exceptional has
occured with the web application; and this means that any server-side state gathered by the original serv-
er must be available to the backup server.

The main mechanism for handling this using the Java Servlet API isthe Ht t pSessi on. The session
can store attributes, much like a Map. Attributes are object values referenced with a string key. In the
event of afailover, al such attributes are expected to be available on the new, backup server, to which
the client's requests are routed.

Different application servers implement Ht t pSessi on replication and failover in different ways; the
servlet APl specification is delibrately non-specific on how this implementation should take place.
Tapestry follows the conventions of the most limited interpretation of the serviet specification; it as-
sumes that attribute replication only occurs when the Ht t pSessi on set Attri but e() method is
invoked 1.

Attribute replication was envisioned as a way to replicate simple, immutable objects suchas St ri ng or
I nt eger . Attempting to store mutable objects, such as Li st , Map or some user-defined class, can be
problematic. For example, modifying an attribute value after it has been stored into the Ht t pSessi on
may cause a failover error. Effectively, the backup server sees a snapshot of the object at the time that

1 Thisisthe replication strategy employed by BEA's WebL ogic server.

27

Managing server-side state

set Attri but e() wasinvoked; any later change to the object's internal state is not replicated to the
other serversin the cluster! This can result in strange and unpredictable behavior following afailover.

Tapestry attempts to sort out the issuesinvolving server-side state in such away that they areinvisible to
the developer. Most applications will not need to explicitly access the Ht t pSessi on at al, but may
till have significant amounts of server-side state. The following sections go into more detail about how
Tapestry approaches these issues.

Engine

The engine, a class which implements the interface | Engi ne, is the central object that is responsible
for managing server-side state (among its many other responsibilities). The engine is itself stored as an
Ht t pSessi on attribute.

Because the internal state of the engine can change, the framework will re-store the engine into the Ht -
t pSessi on at the end of most requests. This ensures that any changes to the Visit object are properly
replicated.

The simplest way to replicate server-side state is simply not to have any. With some care, Tapestry ap-
plications can run stateless, at least until some actual server-side state is necessary.

Visit object

The Visit object is an application-defined object that may be obtained from the engine (viathe vi si t
property of the | Engi ne or | Page). By convention, the class is usualy named Vi si t, but it can be
any class whatsoever, even Map.

The name, "Visit", was selected to emphasize that whatever data is stored in the Visit concerns just a
single visit to the web application. 2

Tapestry doesn't mandate anything about the Visit object's class. The type of thevi si t property is Qb-

j ect . In Java code, accessing the Visit object involves a cast from Cbj ect to an application-specific
class. The following example demonstrates how alistener method may access the visit object.

Example 4.1. Accessing the Visit object
public void fornBSubmt (|l Request Cycl e cycle)

M/ Visit visit = (MyVisit)getPage().getVisit();

vi si t.doSonet hi ng();

In most cases, listener methods, such asf or nSubni t () , are implemented directly within the page. In
that case, the first line can be abbreviated to:

M/ Visit visit = (M/Visit)getVisit();

2 Another good name would have been "session”, but that name is heavily overloaded throughout Java and J2EE.

28

../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/IPage.html
../api/org/apache/tapestry/IRequestCycle.html

Managing server-side state

The Visit object is instantiated lazily, the first time it is needed. Method creat eVi sit () of Ab-
st ract Engi ne isresponsiblefor this.

In most cases, the Visit object is an ordinary JavaBean, and therefore, has a no-arguments constructor. In
this case, the complete class name of the Visit is specified as configuration property
org. apache.tapestry.visit-class.

Typically, the Visit class is defined in the application specification, or as a<i ni t - par anmet er > in
the web deployment descriptor (web.xml).

Example 4.2. Defining the Visit class

<application name="My Application">
<property nane="org. apache. tapestry.visit-class" val ue="nypackage. MyVisit"/>

In cases where the Visit object does not have a no-arguments contructor, or has other specia initializa-
tion requirements, the method cr eat eVi si t () of Abst ract Engi ne can be overridden.

There is a crucial difference between accessing the visit via the vi si t property of | Page and the
vi si t property of | Engi ne. In the former case, accessing the visit via the page, the visit will be cre-
ated if it does not already exist.

Accessing the vi si t property of the | Engi ne is different, the visit will not be created if it does not
aready exist.

Carefully crafted applications will take heed of this difference and try to avoid creating the visit unne-
cessarilly. It is not just the creation of this one object that is to be avoided ... creating the visit will likely
force the entire application to go stateful (create an Ht t pSessi on), and applications are more efficient
while stateless.

Global object

The Global object is very similar to the Visit object with some key differences. The Global object is
shared by al instances of the application engine; ultimately, it is stored asa Ser vl et Cont ext attrib-
ute. The Global object is therefore not persistent in any way. The Global object is specific to an indi-
vidual server within a cluster; each server will have its own instance of the Global object. In afailover,
the engine will connect to a new instance of the Global object within the new server.

The Global object may be accessed using the gl obal property of either the page or the engine (unlike
thevi si t property, they are completely equivalent).

Care should be taken that the Global object is threadsafe; since many engines (from many sessions, in
many threads) will access it ssimultanenously. The default Global object is a synchronized HashMap.
This can be overriden with configuration property or g. apache. t apest ry. gl obal - cl ass.

The most typical use of the Global object isto interface to J2EE resources such as EJB home and remote
interfaces or JDBC data sources. The shared Global object can cache home and remote interfaces that
are efficiently shared by all engine instances.

29

../api/org/apache/tapestry/engine/AbstractEngine.html
../api/org/apache/tapestry/engine/AbstractEngine.html
../api/org/apache/tapestry/engine/AbstractEngine.html
../api/org/apache/tapestry/IPage.html
../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/IEngine.html

Managing server-side state

Persistent page properties

Servlets, and by extension, JavaServer Pages, are inherently stateless. That is, they will be used simul-
taneously by many threads and clients. Because of this, they must not store (in instance variables) any
properties or values that are specified to any single client.

This creates a frustration for devel opers, because ordinary programming techniques must be avoided. In-
stead, client-specific state and data must be stored in the Ht t pSessi on or as Ht t pSer vl et Re-
guest attributes. Thisis an awkward and limiting way to handle both transient state (state that is only
needed during the actual processing of the request) and persistent state (state that should be available
during the processing of this and subsequent requests).

Tapestry bypasses most of these issues by not sharing objects between threads and clients. Tapestry uses
an object pool to store constructed page instances. As a page is needed, it is removed from the page
pool. If there are no available pagesin the pool, a fresh page instance is constructed.

For the duration of a request, a page and all components within the page are reserved to the single re-
guest. Thereis no chance of conflicts because only the single thread processing the request will have ac-
cess to the page. At the end of the request cycle, the page is reset back to a pristine state and returned to
the shared pool, ready for reuse by the same client, or by a different client.

In fact, even in a high-volume Tapestry application, there will rarely be more than afew instances of any
particular page in the page pool.

For this scheme to work it is important that at the end of the request cycle, the page must return to its
pristine state. The prisitine state is equivalent to a freshly created instance of the page. In other words,
any properties of the page that changed during the processing of the request must be returned to their ini-
tial values.

The page is then returned to the page pool, where it will wait to be used in a future request. That request
may be for the same end user, or for another user entirely.

I mportance of resetting properties
<y
Imagine a page containing a form in which a user enters their address and credit card in-

formation. When the form is submitted, properties of the page will be updated with the val-
ues supplied by the user. Those values must be cleared out before the page is stored into
the page poal ... if not, then the next user who accesses the page will see the previous user's
address and credit card information as default values for the form fields!

Tapestry separates the persistent state of a page from any instance of the page. This is very important,
because from one request cycle to another, a different instance of the page may be used ... even when
clustering is not used. Tapestry has many copies of any page in a pool, and pulls an arbitrary instance
out of the pool for each request.

In Tapestry, a page may have many properties and may have many components, each with many proper-
ties, but only atiny number of all those properties needs to persist between request cycles. On alater re-
guest, the same or different page instance may be used. With a little assistance from the developer, the
Tapestry framework can create the illusion that the same page instance is being used in a later request,
even though the request may use a different page instance (from the page pool) ... or (in a clustering en-
vironment) may be handled by a completely different server.

Each persistent page property is stored individually as an Ht t pSessi on attribute. A call to the static
method Tapestry. fi reGbser vedChange() must be added to the setter method for the property
(as we'll see shortly, Tapestry can write this method for you, which is the best approach). When the
property is changed, its value is stored as a session attribute. Like the Servlet API, persistent properties
work best with immutable objects such as St ri ng and Integer;. For mutable objects (including Li st

30

Managing server-side state

and Map), you must be careful not to change the internal state of a persistent property value after invok-
ing the setter method.

Persistent properties make use of a<pr operty-speci fi cati on> element in the page or compon-
ent specification. Tapestry does something special when a component contains any such elements; it dy-
namically fabricates a subclass that provides the desired fields, methods and whatever extra initialization
or cleanup is required.

You may also, optionally, make your class abstract, and define abstract accessor methods that will be
filled in by Tapestry in the fabricated subclass. This allows you to read and update properties inside your
class, inside listener methods.

Define only what you need
Y ou only need to define abstract accessor methods if you are going to invoke those accesor

methods in your code, such as in a listener method. Tapestry will create an enhanced sub-
class that contains the new field, a getter method and a setter method, plus any necessary
initialization methods. If you are only going to access the property using OGNL expres-
sions, then there's no need to define either accessor method.

Transient or persistent?
Properties defined this way may be either transient or persistent. It is useful to define even

transient properties using the <pr operty-speci fi cati on> element because doing
so ensures that the property will be properly reset at the end of the request (before the page
isreturned to the pool for later reuse).

Example 4.3. Persistent page property: Java class

package nypackage;

i mport org.apache.tapestry. ht m . BasePage;

public abstract class MyPage extends BasePage
abstract public int getltensPerPage();

abstract public void setltensPerPage(int itensPerPage);

Example 4.4. Persistent page property: page specification

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE page- speci fi cati on PUBLIC
"-// Apache Software Foundation// Tapestry Specification 3.0//EN'
"http://jakarta. apache. org/tapestry/dtd/ Tapestry 3 0.dtd">

<page- speci fication cl ass="nypackage. MyPage" >

<property-specification

31

../api/org/apache/tapestry/html/BasePage.html

Managing server-side state

nane="it ensPer Page"
per si stent ="yes"
type="int" initial-value="10"/>

</ page- speci fi cati on>

Again, making the class abstract, and defining abstract accessors is optional. It is only useful when a
method within the class will need to read or update the property. It isalso valid to just implement one of
the two accessors. The enhanced subclass will always include both a getter and a setter.

This exact same technique can be used with components as well as pages.
A last note about initialization. After Tapestry invokes the f i ni shLoad() method, it processes the
initial value provided in the specification. If the i ni ti al - val ue attribute is ommitted or blank, no

change takes place. Tapestry then takes a snapshot of the property value, which it retains and uses at the
end of each request cycle to reset the property back to its "pristine” state.

Warning
The previous paragraph may not be accurate; | believe Mindbridge may have changed this
behavior recently.

This means that you may perform initialization for the property inside fi ni shLoad() (instead of
providing an i ni ti al - val ue). However, don't attempt to update the property from i niti al -
i ze() ...theorder of operationswhen the page detachesis not defined and is subject to change.

Implementing persistent page properties
manually

Warning
There is very little reason to implement persistent page properties manualy. Using the
<property-specification>elementismuch easer.

The prefered way to implement persistent page properties without using the
<property-specification> element is to implement the method i nitialize() on your
page. This method is invoked once when the page is first created; it isinvoked again at the end of each
request cycle. An empty implementation of this method is provided by Abst r act Page.

The first example demonstrates how to properly implement a transient property. It is simply a normal

JavaBean property implementation, with a little extra to reset the property back to its pristine value
(nul 1) at the end of the request.

Example4.5. Useof initiali ze() method

package nypackage;
i mport org.apache.tapestry. ht m . BasePage;

32

../api/org/apache/tapestry/AbstractPage.html

Managing server-side state

public class MyPage extends BasePage
private String _nessage;
public String get Message()

return _nessage;

}
public void set Message(String nmessage)
{
_nmessage = nessage;
}
protected void initialize()
{
_message = null;
}

If your page has additional attributes, they should also bereset insidethei ni ti al i ze() method.

Now that we've shown how to manually implement transient state, we'll show how to handle persistent

state.

For a property to be persistent, all that's necessary is that the accessor method notify the framework of
changes. Tapestry will record the changes (using an | PageRecor der) and, in later request cycles,
will restore the property using using the recorded value and whichever page instance is taken out of the

page pool.

This notification takes the form of an invocation of the static method f i r eCbser vedChange() in
the Tapest ry class. This method is overloaded for al the scalar types, and for Qbj ect .

Example 4.6. Manual persistent page property

package nypackage;

i nport org.apache. tapestry. Tapestry;
i mport org.apache. tapestry. ht m . BasePage;

public class MyPage extends BasePage
{
private int _itensPerPage;
public int getltenmsPerPage()

return _itensPerPage;

public void setltenmsPerPage(int itenmsPerPage)

_itemsPer Page = itensPer Page;

Tapestry. fireCbservedChange(this, "itensPerPage",

protected void initialize()

i t emsPer Page) ;

33

../api/org/apache/tapestry/html/BasePage.html
../api/org/apache/tapestry/IPageRecorder.html
../api/org/apache/tapestry/html/BasePage.html

Managing server-side state

_itensPer Page = 10;

This sets up a property, i t ensPer Page, with a default value of 10. If the value is changed (perhaps
by aform or alistener method), the changed value will "stick" with the user who changed it, for the dur-
ation of their session.

Manual persistent component properties

Warning
There is very little reason to implement persistent component properties manually. Using
the<pr operty-speci fi cati on>elementismuch easier.

Tapestry uses the same mechanism for persistent component properties as it does for persisting page
properties (remember that pages are, in fact, specialized components). Implementing transient and per-
sistent properties inside components involves more work than with pages as the initiaization of the
component is more complicated.

Components do not have the equivalent of thei ni ti al i ze() method. Instead, they must register for
an event natification to tell them when the page is being detached from the engine (prior to be stored
back into the page pool). This event is generated by the page itself.

The Java interface PageDet achLi st ener isthe event listener interface for this purpose. By simply
implementing this interface, Tapestry will register the component as a listener and ensure that it receives
event notifications at the right time (this works for the other page event interfaces, such as PageRen-
der Li st ener aswéll; simply implement the interface and leave the rest to the framework).

Tapestry provides amethod, f i ni shLoad(), for just this purpose: late initialization.

Example 4.7. Manual Persistent Component Properties

package nypackage;
i mport org.apache.tapestry. Tapestry;
i mport org.apache.t apestry. BaseConponent ;
i mport org.apache.tapestry. event. PageDet achLi st ener;
i mport org.apache. tapestry. event. PageEvent ;
public class MyConponent extends BaseConponent i npl enents PageDet achLi st ener
{
private String _myProperty;
public void set MyProperty(String nyProperty)
{
_nyProperty = nyProperty;
Tapestry. fireCbservedChange(this, "myProperty", myProperty);

public String get MyProperty()
{

return _nmyProperty;

../api/org/apache/tapestry/event/PageDetachListener.html
../api/org/apache/tapestry/event/PageRenderListener.html
../api/org/apache/tapestry/event/PageRenderListener.html
../api/org/apache/tapestry/BaseComponent.html
../api/org/apache/tapestry/event/PageDetachListener.html

Managing server-side state

protected void initialize()

_myProperty = "a default val ue”;

}
protected void finishLoad()

initialize();
}
/**

* The net hod specified by PageDetachlLi stener.
*/
public void pageDet ached(PageEvent event)

initialize();

Again, there is no particular need to do all this; using the <pr opert y- speci fi cati on> elementis
far, far simpler.

Stateless applications

In a Tapestry application, the framework acts as a buffer between the application code and the Servlet
API ... in particular, it manages how datais stored into the Ht t pSessi on. In fact, the framework con-
trols when the session isfirst created.

This is important and powerful, because an application that runs, even just initially, without a session
consumes far less resources that a stateful application. Thisis even more important in a clustered envir-
onment with multiple servers; any data stored into the Ht t pSessi on will have to be replicated to oth-
er servers in the cluster, which can be expensive in terms of resources (CPU time, network bandwidth,
and so forth). Using less resources means better throughput and more concurrent clients, always a good
thing in aweb application.

Tapestry defers creation of the Ht t pSessi on until one of two things happens. When the Visit object
is created, or when the first persistent page property is recorded. At this point, Tapestry will create the
Ht t pSessi on and store the engineinto it.

Earlier, we said that the | Engi ne instance is stored in the Ht t pSessi on, but this is not always the
case. Tapestry maintains an object pool of | Engi ne instances that are used for stateless requests. An
instance is checked out of the pool and used to process a single request, then checked back into the pool
for reusein alater request, by the same or different client.

For the most part, your application will be unaware of when it is stateful or stateless; statefulness just
happens on its own. Ideally, at least the first, or "Home" page, should be stateless (it should be organized
in such away that the visit is not created, and no persistent state is stored). This will help speed the ini-
tial display of the application, since no processing time will be used in creating the session.

35

../api/org/apache/tapestry/event/PageDetachListener.html
../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/IEngine.html

Chapter 5. Configuring Tapestry
Requirements

Tapestry is designed to operate on a variety of different IVMs and versions of the Java Serviet API. Be-
low you can find the list of supported and tested configurations:

Supported Java Versions

Javal.2.2
Operates correctly. Requires the Xerces parser to be in the classpath (usually provided by the servlet container).

Java1l.3.x
Operates correctly. Requires the Xerces parser to be in the classpath (usually provided by the servlet container).

Java 1.4.x (recommended)
Operates correctly.

Supported Java Servilet APl Versions

Java Servlet API 2.2
Operates correctly with minor exceptions related to character encoding of the requests due to the limitations of
the Servlet APl version.

Java Servlet APl 2.3 (recommended)
Operates correctly.

Web deployment descriptor

All Tapestry applications make use of the Appl i cati onSer vl et class as their servlet; it is rarely
necessary to create a subclass.

Example 5.1. Web Deployment Descriptor

<?xm version="1.0"?>
<! DOCTYPE web-app PUBLIC "-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN
"http://java.sun. com dt d/ web-app_2_ 3. dtd">
<web- app>
<di stributable/> O
<di spl ay- name>My Appl i cati on</di spl ay- nane>
<servl et >
<servl et - name>nyapp</ servl et - nane> [
<servl et - cl ass>or g. apache. t apestry. Appl i cati onServl et </servl et-class> [
<l oad- on- st art up>0</ | oad- on-startup> [
</servl et >

<ser vl et - mappi ng>
<servl et - name>nyapp</ ser vl et - nane>

36

../api/org/apache/tapestry/ApplicationServlet.html
../api/org/apache/tapestry/ApplicationServlet.html

Configuring Tapestry

<url-pattern>/app</url-pattern> O
</ servl et - mappi ng>

<filter> O

<filter-nane>redirect</filter-nanme>

<filter-class>org. apache.tapestry. RedirectFilter</filter-class>
</filter>

<filter-mppi ng>
<filter-nane>redirect</filter-name>
<url-pattern>/</url-pattern>
</filter-mappi ng>

<sessi on-config> _ _
~ <session-tineout >15</ sessi on-ti meout >
</ sessi on-confi g>

<wel come-file-list>
<wel come-fil e>i ndex. ht M </ wel cone-fil e>
</wel come-file-list>

</ web- app>

0 Thisindicates to the application server that the Tapestry application may be clustered. Most applic-
ation servers ignore this element, but future servers may only distribute applications within a
cluster if this element is present.

JBossisvery literal!
JBoss 3.0.x appears to be very literal about the <di st ri but abl e> element. If it

appears, you had better be deploying into a clustered environment, otherwise Ht-
tpSession state management simply doesn't work.

O The servlet name may be used when locating the application specification (though not in this ex-
ample).

O Theservlet classis nearly always Appl i cat i onSer vl et . There's rarely a need to create a sub-
class; Tapestry has many other hooks for extending the application.

O Itisgenerally agood ideato specify <l oad- on- st ar t up>, this causes the servlet container to
instantitate and initialize the the application servlet, which in turn, reads the Tapestry application
specification. Many common development errors will be spotted immediately, rather than when the
first application request arrives.

0 Theservlet ismapped to / app within the context. The context itself has a path, determined by the
application server and based on the name of the WAR file. The client web browser will see the
Tapestry applicationasht t p: / / host / war - name/ app.

Using / app asthe URL isacommon convention when creating Tapestry applications, but is not a
requirement. The framework will adapt to whatever mapping you select.

O Thisfilter sends aclient redirect to the user when they access the web application context. The fil-
ter sends a client redirect to the user's browser, directing them to the application servlet. In this
way, the "public* URL for an application can be ht t p: / / nyser ver/ mycont ext/ when, in
fact, therea addressishtt p: // myserver/ mycont ext/ app.

Oninitialization, the Tapestry servlet will locate its application specification; afile that identifies details
about the application, the pages and components within it, and any component libraries it uses. Tapestry
provides a great deal of flexibility on where the specification is stored; trivial Tapestry applications can
operate without an application specification.

The specification is normally stored under VEB- | NF. In fact, Tapestry performs a search to find the
specification:

37

../api/org/apache/tapestry/RedirectFilter.html
../api/org/apache/tapestry/ApplicationServlet.html

Configuring Tapestry

1. On the classpath, as defined by the
org. apache. tapestry. appl i cati on-speci fi cati on configuration parameter.

2. As/VEB- | NF/ nane/ nane. appl i cati on. The nane is the servlet name. This location is
only used in the rare case of asingle WAR containing multiple Tapestry applications.

3. As/VEB-I NF/ nane. appl i cati on. Again, namne is the servlet name. This is the standard
location.

If the application specification still can not be found, then an empty, "stand in" application specification
is used. Thisis perfectly acceptible ... an application specification is typically needed only when an ap-
plication makes use of component libraries, or requires some other kind of customization only possible
with an application specification.

Configuration Search Path

Tapestry occasionally must obtain a value for a configuration property. These configuration properties

are items that are frequently optional, and don't fit into any particular specification. Many are related to

the runtime environment, such as which class to instantiate as the Visit object.

Tapestry is very flexible about where values for such properties may be obtained. In general, the search

path for configuration propertiesis:

e Asac<property> of the <appl i cati on> (in the application specification, if the application
uses one).

* Asan<init-paraneter>forthe serviet, in the web application deployment descriptor.

e As an <init-paraneter> for the servliet context, also in the web application deployment
descriptor.

* AsaJVM system property.

e Hard-coded "factory" defaults (for some properties).

It is expected that some configurations are not defined at any level; those will return null.

Applications are free to leverage this lookup mechanism as well. | Engi ne defines a pr opert y So-
ur ce property (of typel Pr opert ySour ce) that can be used to perform such lookups.

Applications may also want to change or augment the default search path; this is accomplished by over-
riding Abst r act Engi ne method cr eat ePr opert ySour ce() . For example, some configuration
data could be drawn from a database.

The following are all the configuration values currently used in Tapestry:

Configuration Values

org. apache. t apestry. t enpl at e- ext ensi on
Overrides the default extension used to locate templates for pages or components. The default extension is
"html", this configuration property allows overrides where appropriate. For example, an application that pro-
duces WML may want to override thisto "wml".

38

../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/engine/IPropertySource.html
../api/org/apache/tapestry/engine/AbstractEngine.html

Configuring Tapestry

This configuration property does not follow the normal search path rules. The <pr oper t y> must be provided
inthe <page- speci fi cati on>or <conponent - speci fi cati on>. If no valueisfound there, the im-
mediate containing <appl i cati on> or <l i brary-speci fi cati on> is checked. If till not found, the
default is used.

org. apache. tapestry. asset. dir,org. apache. tapestry. asset. URL
These two values are used to handle private assets. Private assets are assets that are stored on the classpath, and
not normally visible to client web browsers.

By specifying these two configuration values, Tapestry can export private assets to a directory that is visible to
the client web browser. The URL value should map to the directory specified by the di r value.

org. apache. tapestry.visit-cl ass
The fully qualified class nameto instantiate as the Visit object.

If not specified, an instance of HashMap will be created.

org. apache. tapestry. def aul t - page- cl ass
By default, any page that omitsthe cl ass attribute (inits<page- speci fi cati on>) will be instantiated as
BasePage. If thisis not desired, the default may be overridden by specifying afully qualified class name.

or g. apache. t apestry. engi ne-cl ass
The fully qualified class name to instantiate as the application engine. This configuration value is only used
when the application specification does not exist, or fails to specify aclass. By default, BaseEngi ne isused if
this configuration value is also left unspecified.

or g. apache. t apestry. enhance. di sabl e- abst ract - met hod-val i dati on
Used to work around a bug in IBM's JDK 1.3.1. This JDK reports all methods of an abstract class as abstract,
even if they are concrete. This causes spurious errors about unimplemented abstract methods. Specifyingt r ue
for this property disables checks for unimplemented abstract methods.

or g. apache. t apestry. gl obal - cl ass
The fully qualified class name to instantiate as the engine gl obal property. The Global object is much like
Visit object, except that it is shared by al instances of the application engine rather than being private to any
particular session. If not specified, a synchronized instance of HashMap is used.

org. apache. tapestry. defaul t-scri pt-1|anguage
The name of a BSF-supported language, used when a <l i st ener - bi ndi ng> element does not specify a
language. If not overridden, the default is"jython".

org. apache. tapestry. enabl e-reset - servi ce
If not specified as "true”, then the r eset service will be non-functional. The reset service is used to force the
running Tapestry application to discard all cached data (including templates, specifications, pooled objects and
more). This must be explicitly enabled, and should only be used in development (in production, it is too easily
exploited as adenial of service attack).

Unlike most other configuration values, this must be specified as a VM system property.

or g. apache. t apestry. di sabl e- cachi ng
If specified (as "true"), then the framework will discard all cached data (specifications, templates, pooled ob-
jects, etc.) at the end of each request cycle.

This dlows down request handling by a noticable amount, but is very useful in development; it means that
changes to templates and specifications are immediately visible to the application. It also helps identify any er-
rors in managing persistent page state.

This should never be enabled in production; the performance hit is too large. Unlike most other configuration
values, this must be specified asa JVM system property.

39

../api/org/apache/tapestry/html/BasePage.html
../api/org/apache/tapestry/engine/BaseEngine.html
http://jakarta.apache.org/bsf/

Configuring Tapestry

or g. apache. t apestry. out put - encodi ng
Defines the character set used by the application to encode its HTTP responses. This is also the character set
that the application assumes that the browser uses when submitting data unless it is not specified differently in
the HTTP request.

The default for this configuration property is UTF-8. Normally there is no need to modify this value since UTF-
8 alows amost all charactersto be correctly encoded and displayed.

org. apache. tapestry. t enpl at e- encodi ng
Defines the character set used by the application templates. The default valueis | SO-8859-1.

Please see the Character Sets section for more information.

Application extensions

Tapestry is designed for flexibility; this extends beyond simply configuring the framework, and encom-
passes actualy replacing or augmenting the implementation of the framework. If Tapestry doesn't do
what you want it to, there are multiple paths for extending, changing and overriding its normal behavior.
In some cases, it is necessary to subclass framework classes in order to alter behavior, but in many
cases, it is possible to use an application extension.

Application extensions are JavaBeans declared in the application specification using the
<ext ensi on> element. Each extension consists of a name, a Java class to instantiate, and an optional
configuration (that is, properties of the bean may be set). The framework has a finite number of exten-
sion points. If an extension bean with the correct name exists, it will be used at that extension point.

Y our application may have its own set of extensions not related to Tapestry framework extension points.
For example, you might have an application extension referenced from multiple pages to perform com-
mon operations such as INDI lookups.

Y ou may access application extensions via the engine's specification property. For example:

| Engi ne engi ne = get Engi ne();
| Appl i cati onSpecification specification = engine. get Specification();

nmyExt ensi on nyExt ensi on = (MyExt ensi on) specificati on. get Ext ensi on(" nmyExt ensi on");

Each application extension used with an framework extension point must implement an interface partic-
ular to the extension point.

Application Extension Points

org. apache. tapestry. property-source (I PropertySource)
This extension is fit into the configuration property search path, after the serviet context, but before VM sys-
tem properties. A typical use would be to access some set of configuration properties stored in a database.

or g. apache. tapestry. request - decoder (I Request Decoder)
A request decoder is used to identify the actual server name, server port, scheme and request URI for the re-
quest. In some configurations, a firewall may invalidate the values provided by the actual Ht t pSer vl et Re-
qguest (the values reflect the internal server forwarded to by the firewall, not the actual values used by the ex-
ternal client). A request decoder knows how to determine the actual values.

40

../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/spec/IApplicationSpecification.html
../api/org/apache/tapestry/engine/IPropertySource.html
../api/org/apache/tapestry/request/IRequestDecoder.html

Configuring Tapestry

org. apache. tapestry. nmonitor-factory (I MonitorFactory)
An object that is used to create | Moni t or instances. Monitors are informed about key application events (such
as loading a page) during the processing of arequest.

The factory may create a new instance for the request, or may simply provide access to a shared instance.
If not specified, a default implementation is used (Def aul t Moni t or Fact ory).

org. apache. tapestry. specification-resol ver-del egate (I SpecificationRe-
sol ver Del egat e)
An object which is used to find page and component specifications that are not located using the default search
rules. The use of thisis open-ended, but is generally useful in very advanced scenarios where specifications are
stored externally (perhapsin a database), or constructed on the fly.

org. apache. tapestry. tenpl at e- sour ce- del egat e (I Tenpl at eSour ceDel egat €)
An object which is used to find page or component templates that are not located using the default search rules.
The use of thisis open-ended, but is generally useful in very advanced scenarios where templates are stored ex-
ternally (perhapsin adatabase), or constructed on the fly.

org. apache.tapestry. mul ti part-decoder (I Mul ti part Decoder)
Allows an alternate object to be responsible for decoding multipart requests (context type multipart/form-data,
used for file uploads). Generally, thisis used to configure an instance of Def aul t Mul t i part Decoder with
non-default values for the maximum upload size, threshold size (number of bytes before atemporary fileis cre-
ated to store the) and repository directory (where temporary files are stored).

org. apache. tapestry. ognl -type-converter
Specifies an implementation of ognl.TypeConverter to be used for expression bindings. See OGNL's Type Con-
verter documentation for further information on implementing a custom type converter.

Character Sets

Tapestry is designed to make the web application localization easy and offers the ability to define differ-
ent localized templates for the same component. For example, Horre. ht ml would be the default tem-
plate of the Home page, however Hone fr. htnml would be used in al French locales, while
Horme_zh_CN. ht m would be used in Chinaand Horre_zh_TW ht m would be used in Taiwan.

Web developers and designers in different countries tend to use different character sets for the templates
they produce. English, German, French templates are typically produced in 1SO-8859-1, Russian tem-
plates often use KOI8-R, and Chinese texts are normally written in Bigb. Tapestry allows the application
to configure the character set used in its templates and makes it possible to use different character sets
for templates associated with different components and different locales.

The character set of a template is defined using the
org. apache. tapestry. t enpl at e- encodi ng configuration property. The search path of this

property is dightly different then the standard one and allows specific components to use other character
sets:

e As a <property> of the <page- speci ficati on> or the
<conponent - speci fi cat i on> (in the page or component specification).
This configuration will apply only to the page or component whereit is defined.

* Asac<property> of the <library-specification> (in the library specification, if the
components are included in alibrary).

This configuration will apply to all pages and componentsin the library.

41

../api/org/apache/tapestry/engine/IMonitorFactory.html
../api/org/apache/tapestry/engine/IMonitor.html
../api/org/apache/tapestry/engine/DefaultMonitorFactory.html
../api/org/apache/tapestry/resolver/ISpecificationResolverDelegate.html
../api/org/apache/tapestry/resolver/ISpecificationResolverDelegate.html
../api/org/apache/tapestry/engine/ITemplateSourceDelegate.html
../api/org/apache/tapestry/multipart/IMultipartDecoder.html
../api/org/apache/tapestry/multipart/DefaultMultipartDecoder.html
http://www.ognl.org/2.6.3/Documentation/html/typeConversion.html
http://www.ognl.org/2.6.3/Documentation/html/typeConversion.html

Configuring Tapestry

* Asac<property> of the <appl i cati on> (in the application specification, if the application
USes one).

e Asan<init-paranet er > for the serviet, in the web application deployment descriptor.

* As an <init-paraneter> for the servlet context, also in the web application deployment
descriptor.

* AsaJVM system property.
» The hard-coded default "1 SO-8859-1".

Tapestry also makes it possible to define the character set used by the templates specific to a particular
locdle by appending the locale to the property name above. As an example, the
org. apache. tapestry. tenpl at e-encodi ng_ru configuration property would define the
character set used by the Russian templates, such as Hone_r u. ht ml . This allows templates for differ-
ent locales to use different character sets, even though they are in the same application. For example, it
is possible for all Russian templates in the application to use the KOI8-R character set and all Chinese
templatesto use Big5 at the sametime.

The character sets used by the templates do not reflect in any way on the character set Tapestry uses to
encode its response to the browser. The character sets are used when reading the template to trandate it
appropriately into Unicode. The output character set is defined by the
or g. apache. t apestry. out put - encodi ng configuration property.

42

Appendix

A.

Properties

When using Tapestry, an important aspect of your work is to leverage the properties exposed by the
various objects within Tapestry. A page has properties (inherited from base classes such as Abst r act -

Conponent and BasePage) and contains components and other objects with more properties. Pages
are connected to an engine, which exports its own set of properties. This appendix isaquick guideto the
most common objects and their properties.

Tapestry

TableA.1. Tapestry Object Properties

Object

Property name

Defining class

Property type

Description

activePageNames

BaseEngi ne

Col l ectionof String

Names of al pages for
which a page recorder has
been created.

assets

| Conponent

Map of | Asset

Localized assets as defined
in the component's specific-
ation.

beans

| Conponent

| BeanPr ovi der

Used to access beans
defined using the <bean>
specification element.

bindingNames

| Conponent

Col l ectionof String

The names of al forma
and informa parameter
bindings for the component.

bindings

| Conponent

Map of | Bi ndi ng

All bindings (for both form-
al and informal parameters)
for this component, keyed
on the parameter name.

body

Abst r act Conponent

| Render []

The body of the compon-
ent: the text (as | Render)
and components (which in-
herit from | Render) that
the component directly en-
closes within its container's
template.

bodyCount

Abst r act Conponent

int

The active number of ele-
ments in the body property

array.

componentClassEnhancer |l Engi ne | Conponent O assEn- |Object responsible for dy-
hancer namic creation of enhanced
subclasses of Tapestry
pages and components.
components | Conponent Map of | Conmponent All components contained
by this component, keyed
on the component id.
contextPath | Engi ne String The path, if any, for the
web application context.
changeObserver | Page ChangeCbser ver An object that recieves no-

tifications about changes to

43

../api/org/apache/tapestry/AbstractComponent.html
../api/org/apache/tapestry/AbstractComponent.html
../api/org/apache/tapestry/html/BasePage.html
../api/org/apache/tapestry/engine/BaseEngine.html
../api/org/apache/tapestry/IComponent.html
../api/org/apache/tapestry/IAsset.html
../api/org/apache/tapestry/IComponent.html
../api/org/apache/tapestry/IBeanProvider.html
../api/org/apache/tapestry/IComponent.html
../api/org/apache/tapestry/IComponent.html
../api/org/apache/tapestry/IBinding.html
../api/org/apache/tapestry/AbstractComponent.html
../api/org/apache/tapestry/IRender.html
../api/org/apache/tapestry/IRender.html
../api/org/apache/tapestry/IRender.html
../api/org/apache/tapestry/AbstractComponent.html
../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/engine/IComponentClassEnhancer.html
../api/org/apache/tapestry/engine/IComponentClassEnhancer.html
../api/org/apache/tapestry/IComponent.html
../api/org/apache/tapestry/IComponent.html
../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/IPage.html
../api/org/apache/tapestry/event/ChangeObserver.html

Tapestry Object Properties

Property name

Defining class

Property type

Description

persistent page properties.

componentM essagesSource

| Engi ne

| Conponent Messa-
gesSour ce

An object that allows com-
ponents to find their set of
localized messages.

container

| Conponent

| Conponent

The page or component
which contains this com-
ponent. Pages will return
null.

dataSqueezer

| Engi ne

Dat aSqueezer

Object used to encode and
decode arbitrary values into
a URL while maintaining
their type.

dirty

Abst r act Engi ne

boolean

True if the engine has been
(potentially) modified, and
should be stored into the
Ht t pSessi on.

disabled

| For mConponent

boolean

If true, the component
should be disabled (and not
respond to query paramet-
ers passed up in the re
quest).

displayName

| For nConponent

String

Localized string to be dis-
played as a label for the
form control. Most imple-
mentations leave this un-
defined (as null).

engine

| Page

| Engi ne

The engine to which the
pageis currently attached.

extendedld

| Conponent

String

An "extended" version of
the i dPat h property that
includes the name of the
page containing the com-
ponent as well.

form

| For mConponent

| Form

The form which encloses
the form control compon-
ent.

global

| Engi ne, | Page

hj ect

The Global object for the
application.

hasVisit

Abst ract Engi ne

boolean

Returns true if the Visit ob-
ject has been created, false
initially.

| Conponent

String

The id of the component,
which is unique within its
container. In many cases,
the framework may have
assigned an automatically
generated id. Pages do not
have anid and return null.

idPath

| Conmponent

String

A sequence of id's used to
locate a component within a
page. A component bar
within a component f oo

../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/engine/IComponentMessagesSource.html
../api/org/apache/tapestry/engine/IComponentMessagesSource.html
../api/org/apache/tapestry/IComponent.html
../api/org/apache/tapestry/IComponent.html
../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/util/io/DataSqueezer.html
../api/org/apache/tapestry/engine/AbstractEngine.html
../api/org/apache/tapestry/form/IFormComponent.html
../api/org/apache/tapestry/form/IFormComponent.html
../api/org/apache/tapestry/IPage.html
../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/IComponent.html
../api/org/apache/tapestry/form/IFormComponent.html
../api/org/apache/tapestry/IForm.html
../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/IPage.html
../api/org/apache/tapestry/engine/AbstractEngine.html
../api/org/apache/tapestry/IComponent.html
../api/org/apache/tapestry/IComponent.html

Tapestry Object Properties

Property name

Defining class

Property type

Description

within a page will have an
idPath of foo.bar.
Pages return null.

listeners

Abst r act Conponent ,
Abst r act Engi ne

Li st ener Map

Used to map listener meth-
ods as objects that imple-
ment the | Action-
Li st ener interface.

locale

| Engi ne

Local e

The locale for the current
client; this is used when
loading pages from the
page pool, or when instanti-
ating new page instances.

locale

| Page

Local e

The locale to which the
page and al components
within the pageis localized.

location

many

| Locati on

The location that should be
used with any error mes-
sages generated about the
object. This is ultimately
the file, line (and even
column) of the template or
specification file respons-
ible for defining the object
(be it a component, a page,
or some other kind of ob-
ject).

messages

| Conmponent

| Messages

Localized messages for the
component.

name

| For nConponent

String

The name, or element id,
assigned to the form control
by the | For m This is set
as the component renders
(but the property can then
be read after the component
renders).

namespace

| Conponent

| Namespace

The namespace containing
the component. Compon-
ents are always within some
namespace, whether it is
the default (application)
namespace, the framework
namespace, Or a namespace
for acomponent library.

outputEncoding

Abst r act Page

String

Output encoding for the
page.

page

| Conponent

| Page

The page which ultimately
contains the component.

propertySource

| Engi ne

| PropertySource

Source for configuration
properties.

pageName

| Page

String

The fully qudified page
name (possibly including a
namespace prefix).

45

../api/org/apache/tapestry/AbstractComponent.html
../api/org/apache/tapestry/engine/AbstractEngine.html
../api/org/apache/tapestry/listener/ListenerMap.html
../api/org/apache/tapestry/IActionListener.html
../api/org/apache/tapestry/IActionListener.html
../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/IPage.html
../api/org/apache/tapestry/ILocation.html
../api/org/apache/tapestry/IComponent.html
../api/org/apache/tapestry/IMessages.html
../api/org/apache/tapestry/form/IFormComponent.html
../api/org/apache/tapestry/IForm.html
../api/org/apache/tapestry/IComponent.html
../api/org/apache/tapestry/INamespace.html
../api/org/apache/tapestry/AbstractPage.html
../api/org/apache/tapestry/IComponent.html
../api/org/apache/tapestry/IPage.html
../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/engine/IPropertySource.html
../api/org/apache/tapestry/IPage.html

Tapestry Object Properties

Property name

Defining class

Property type

Description

pageSource

| Engi ne

| PageSour ce

The object used to obtain
page instances.

pool

| Engi ne

Pool

Stores objects that are ex-
pensive to create.

requestCycle

| Page

| Request Cycl e

The request cycle to which
the page is currently at-
tached.

resetServiceEnabled

| Engi ne

boolean

If true, the reset service is
enabled. The reset service
is disabled by defaullt.

resourceResolver

| Engi ne

| Resour ceResol ver

Object responsible for loc-
ating classes and classpath
resources.

scriptSource

| Engi ne

| Scri pt Sour ce

Object that parses and
caches script specifications.

servletPath

| Engi ne

String

The URL path used to ref-
erence the application ser-
vlet (including the context
path, if any).

specification

| Conponent

| Conponent Spe-
cification

The specification which
defines this component. Of-
ten used to access meta data
defined in the component's
specification using the
<pr opert y> element.

specification

| Engi ne

| Appl i cati onSpe-
cification

The specification for the
application.

specificationSource

| Engi ne

| Speci fication-
Sour ce

Object responsible for read-
ing and caching page and
component specifications.

stateful

| Engi ne

boolean

If true, then an Ht t pSes-
si on has been created for
the client to store server-
side state. Initialy false.

templateSource

| Engi ne

| Tenpl at eSour ce

Object responsible for read-
ing and caching page and
component templates.

visit

| Engi ne

bj ect

Returns the Visit object for
the current client, or null if
the Visit object has not yet
been created.

visit

| Page

bj ect

Returns the Visit object for
the current client, creating
it if necessary.

46

../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/engine/IPageSource.html
../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/IPage.html
../api/org/apache/tapestry/IRequestCycle.html
../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/IResourceResolver.html
../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/engine/IScriptSource.html
../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/IComponent.html
../api/org/apache/tapestry/spec/IComponentSpecification.html
../api/org/apache/tapestry/spec/IComponentSpecification.html
../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/spec/IApplicationSpecification.html
../api/org/apache/tapestry/spec/IApplicationSpecification.html
../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/engine/ISpecificationSource.html
../api/org/apache/tapestry/engine/ISpecificationSource.html
../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/engine/ITemplateSource.html
../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/IPage.html

Appendix B. Tapestry JAR files

The Tapestry distribution includes the Tapestry JARs, plus all the dependencies (other libraries that
Tapestry makes use of). The JAR filesareinthel i b folder (or in folders beneath it).

tapestry-3.0.jar
The main Tapestry framework. This is needed at compile time and runtime. The framework release number is
integrated into the file name.

tapestry-contrib-3.0.jar
Contains additional components and tools that are not integral to the framework itself, such as the Pal et t e.
Needed at runtime if any such components are used in an application. The framework release number is integ-
rated into the file name.

runtine/*.jar
Frameworks that are usually needed at runtime (but not at framework build time) and are not always supplied
by the servlet container. This currently isjust the Log4J framework.

ext/*.jar
Frameworks needed when compiling the framework and at runtime. This is several other Jakarta frameworks
(including BSF and BCEL), plus the OGNL and Javassist frameworks.

j 2eel/*.jar
Contains the J2EE and Servlet APIs. These are needed when building the framework, but are typically provided
at runtime by the servlet container or application server.

47

../ComponentReference/contrib.Palette.html
http://jakarta.apache.org/log4j/
http://jakarta.apache.org
http://jakarta.apache.org/bsf/
http://jakarta.apache.org/bcel/
http://www.ognl.org
http://jboss.org/developers/projects/javassist.html

Appendix C. Tapestry Specification
DTDs

This appendix describes the four types of specifications used in Tapestry.

Table C.1. Tapestry Specifications

Type File Extension Root Element Public ID System ID
Application application <application> |-//Apache ht -
Sof t war e tp://jakarta.a
Foundati on/ pache. org/t ape
/ Tapestry Spe- |stry/
cification dt d/
3.0/ /EN Tapestry_3 0.d
td
Page page <page-specific |-//Apache ht -
ati on> Sof t war e tp://jakarta.a
Foundati on/ pache. org/t ape
| Tapestry Spe- [stry/
cification dt d/
3.0//EN Tapestry_3 0.d
td
Component jwe <conponent - spe |-// Apache ht -
cification> Sof t war e tp://jakarta.a
Foundati on/ pache. org/t ape
/ Tapestry Spe- |stry/
cification dtd/
3.0/ /EN Tapestry_3 0.d
td
Library library <library-speci |-//Apache ht -
fication> Sof t war e tp://jakarta.a
Foundati on/ pache. org/t ape
| Tapestry Spe- [stry/
cification dt d/
3.0//EN Tapestry_3 0.d
td
Script script <script> -1/ Apache ht -
Sof t war e tp://jakarta.a
Foundat i on/ pache. or g/t ape
/| Tapestry stry/
Scri pt Spe- |dt d/
cification Script_3 0.dtd
3.0//EN

The four general Tapestry specifications (<appl i cati on>, <conponent -specification>
<page-specification>and<library-specification>) al share the same DTD, but use
different root elements.

<appl i cati on> element

48

Tapestry Specification DTDs

root element

The application specification defines the pages and components specific to a single Tapestry application.
It also defines any libraries that are used within the application.

FigureC.1. <appl i cat i on> Attributes

Name Type Required ? Default Value Description

name string no User presentable
name of application.

engine-class string no Name of an imple-

mentation of | En-
gi ne to instantiate.
Defaults to BaseEn-
gi ne if not specified.

FigureC.2. <appl i cat i on> Elements

<descri pti on>? <property>*,
(<page> | <conponent -t ype> |<servi ce> | <l i brary>|<ext ensi on>) *

<bean> element
Appearsin: <conponent - speci fi cati on>and <page- speci fi cati on>

A <bean> is used to add behaviors to a page or component via aggregation. Each <bean> defines a
named JavaBean that is instantiated on demand. Beans are accessed through the OGNL expression
beans. nane.

Once a bean isinstantiated and initialized, it will be retained by the page or component for some period
of time, specified by the bean's lifecycle.

bean lifecycle

none
The bean is not retained, a new bean will be created on each access.

page
The bean isretained for the lifecycle of the page itself.

render
The bean is retained until the current render operation completes. This will discard the bean when a page or
form finishes rewinding.

request
The bean isretained until the end of the current request.

49

../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/IEngine.html
../api/org/apache/tapestry/engine/BaseEngine.html
../api/org/apache/tapestry/engine/BaseEngine.html

Tapestry Specification DTDs

Caution should be taken when using lifeycle page. A bean is associated with a particular instance of a
page within a particular JVM. Consecutive requests may be processed using different instances of the
page, possibly in different JVMs (if the application is operating in a clustered environment). No state
particular to a single client session should be stored in a page.

Beans must be public classes with a default (no arguments) constructor. Properties of the bean may be
configured using the <set - pr oper t y> and <set - message- pr oper t y> elements.

Figure C.3. <bean> Attributes

Name Type Required ? Default Value Description

name string yes The name of the bean,
which must be a valid
Javaidentifier.

class string yes The name of the class
to instantiate.

lifecycle none| page| rend |no request As described above;

er| request duration that bean is

retained.

Figure C.4. <bean> Elements

<descri pti on>? <property>*,
(<set - property>|<set - mnessage- property>)*

<bi ndi ng> element

Appearsin: <conponent >
Binds a parameter of an embedded component to an OGNL expression rooted in its container.
In an instantiated component, bindings can be accessed with the OGNL expression bi ndi ngs. nane.

If the expr essi on attribute is omitted, then the body of the element is used. This is useful when the
expression islong, or contains problematic characters (such as amix of single and double quotes).

Figure C.5. <bi ndi ng> Attributes

Name Type Required ? Default Value Description

name string yes The name of the para-
meter to bind.

expression string yes The OGNL expres-

sion, relative to the
container, to be bound
to the parameter.

50

Tapestry Specification DTDs

<conponent > element

Appearsin: <conponent - speci fi cati on>and <page- speci fi cati on>
Defines an embedded component within a container (a page or another component).

In an instantiated component, embedded components can be accessed with the OGNL expression cont
ponents.id.

Figure C.6. <conponent > Attributes

Name

Type Required ? Default Value Description

string yes Identifier for the com-
ponent here and in the
component's template.
Must be a vaid Java
identifier.

type

string no A component type to
instantiate.

copy-of

string no The name of a previ-
oudly defined com-
ponent. The type and
bindings of that com-
ponent will be copied
to this component.

inherit-inform- yes| no no no If yes, then any in-
al-parameters formal parameters of

the containing com-
ponent will be copied
into this component.

Either t ype or copy- of must be specified.

A component type is either a ssmple name or a qualified name. A simple name is the name of an com-
ponent either provided by the framework, or provided by the application (if the page or component is
defined in an application), or provided by the library (if the page or component is defined in alibrary).

A qualified nameis alibrary id, a colon, and a smple name of a component provided by the named lib-

rary (for example, contri b: Pal ett e). Library ids are defined by a <l i br ar y> eement in the
containing library or application.

Figure C.7. <conmponent > Elements

<property>*,
(<bi ndi ng> | <i nheri t ed- bi ndi ng>|<l i st ener - bi ndi ng>|<stati c-bi ndi ng>|<nessage- bi ndi

<conponent -t ype> element

51

Tapestry Specification DTDs

Appearsin: <appl i cati on>and<li brary-specification>

Defines a component type that may latter be used in a<conponent > element (for pages and compon-
ents also defined by this application or library).

Figure C.8. <conponent - t ype> Attributes

Name Type Required ? Default Value Description

type string yes A name to be used as
acomponent type.

specification-path string yes An absolute or relat-

ive resource path to
the component's spe-
cification (including
leading dlash and file
extension). Relative
resources are evalu-
ated relative to the
location of the con-
taining application or
library specfication.

<conponent - speci fi cati on> element

root element

Defines anew component, in terms of its APl (<par anet er >s), embedded components, beans and as-
sets.

The sructure of a <conponent-specification> is vey smila to a

<page- speci ficati on> except components have additional attributes and elements related to
parameters.

Figure C.9. <conponent - speci fi cat i on> Attributes

Name

Type Required ? Default Value Description

class

string no The Java class to in-
stantiate, which must
implement the inter-
face | Conmponent.
If not specified,
BaseComponent is
used.

allow-body

yes| no no yes
If yes, then any body
for this component,
from its containing
page or component's
template, is retained
and may be produced

52

../api/org/apache/tapestry/IComponent.html
../api/org/apache/tapestry/BaseComponent.html

Tapestry Specification DTDs

Name Type Required ? Default Value Description

using a Render-
Body component.

If no, then any body
for this component is
discarded.

allow-inform- yes| no no yes
al-parameters If yes, then any in-
formal parameters
(bindings that don't
match a formal para-
meter) specified here,
or in the component's
tag within its contain-
er's template, are re-
tained. Typicaly,
they are converted in-
to additiona HTML
attributes.

If no, then informal
parameters are not al-
lowed in the specific-
ation, and discarded if
in the template.

Figure C.10. <conponent - speci fi cat i on> Elements

<descri pti on>? <par anet er > *, <r eser ved- par anet er > *, <pr opert y>*,
(<bean> | <conponent > | <ext er nal - asset > | <cont ext - asset > |<pri vat e- asset > | <property- sy

<conf i gur e> element

Appearsin: <ext ensi on>

Allows a JavaBeans property of the extension to be set from a statically defined value. The
<confi gur e> element wraps around the static value. The value is trimmed of leading and trailing
whitespace and optionally converted to a specified type before being assigned to the property.

Figure C.11. <conf i gur e> Attributes

Name Type Required ? Default Value Description

property-name string yes The name of the ex-
tension property to
configure.

type bool ean|int|lo |no String The conversion to ap-

53

../ComponentReference/RenderBody.html
../ComponentReference/RenderBody.html

Tapestry Specification DTDs

Name Type Required ? Default Value Description
ng| doubl e| Stri ply to the value.
ng
value no The value to config-

ure, which will be
converted before be-
ing assigned to the
property. If not
provided, the charac-
ter data wrapped by
the element is used
instead.

<cont ext - asset > element

Specifies an asset located relative to the web application context root folder. Context assets may be loc-
alized.

Assets for an instantiated component (or page) may be accessed using the OGNL expression
assets. nane.

The path may be either absolute or relative. Absolute paths start with a leading slash, and are evalulated
relative to the context root. Relative paths are evaluated relative to the application root, which is typic-
ally the same as the context root (the exception being a WAR that contains multiple Tapestry applica-
tions, within multiple subfolders).

Figure C.12. <cont ext - asset > Attributes

Name Type Required ? Default Value Description

name string yes The name of the as-
set, which must be a
valid Javaidentifier.

path string yes The path to the asset.

<descri pti on> element

Appears in: many

A description may be attached to a many different elements. Descriptions are used by an intelligent IDE
to provide help. The Tapestry Inspector may also display a description.

The descriptive text appears inside the <descri pti on> tags. Leading and trailing whitespace is re-
moved and interior whitespace may be altered or removed. Descriptions should be short; external docu-
mentation can provide greater details.

The<descri pti on> element has no attributes.

Tapestry Specification DTDs

<ext ensi on> element

Appearsin: <appl i cati on>and<l i brary-specification>

Defines an extension, a JavaBean that is instantiated as needed to provide a global service to the applica-
tion.

Figure C.13. <ext ensi on> Attributes

Name Type Required ? Default Value Description

name string yes A name for the exten-
sion, which can (and
should) look like a
qualified class name,
but may also include
the dash character.

class string yes The Java class to in-
stantiate. The class
must have a zero-
arguments construct-
or.

immediate yes| no no no If yes, the extension
is instantiated when
the gspecification is
read. If no, then the
extension is not cre-
ated until first needed.

Figure C.14. <conponent - speci fi cat i on> Elements

<property>* <confi gure>*

<ext er nal - asset > element

Appearsin: <conponent - speci fi cati on>and <page- speci fi cati on>

Defines an asset at an arbitrary URL. The URL may begin with a slash to indicate an asset on the same
web server as the application, or may be acomplete URL to an arbitrary location on the Internet.

External assets may be accessed at runtime with the OGNL expression asset s. namne.

Figure C.15. <ext er nal - asset > Attributes

Name Type Required ? Default Value Description

name string yes A name for the asset.

55

Tapestry Specification DTDs

Name Type Required ? Default Value Description

Asset names must be
valid Javaidentifiers.

URL string yes The URL used to ac-
cess the asset.

<i nheri t ed- bi ndi ng> element

Appearsin: <conponent >
Binds a parameter of an embedded component to a parameter of its container.

In an instantiated component, bindings can be accessed with the OGNL expression bi ndi ngs. nane.

Figure C.16. <i nheri t ed- bi ndi ng> Attributes

Name Type Required ? Default Value Description

name string yes The name of the para-
meter to bind.

parameter-name string yes The name of a para-
meter of the contain-
ing component.

<l i brary>element

Appearsin: <appl i cati on>and<li brary-specification>

Establishes that the containing application or library uses components defined in another library, and
sets the prefix used to reference those components.

FigureC.17. <l i br ar y> Attributes

Name Type Required ? Default Value Description

id string yes The id associated
with the library. Com-
ponents within the
library can be refer-
enced with the com-

ponent type
i d: nane.
specification-path string yes The complete re

source path for the
library specification.

56

Tapestry Specification DTDs

<lib

<li1s

rary-specificati on>element

root element

Defines the pages, components, services and libraries used by a library. Very similar to
<appl i cati on>, but without attributes related application name or engine class.

The<l i brary-specificati on> element has no attributes.

FigureC.18.<l i brary-speci fi cati on> Elements

<descri pti on>? <property>*,
(<page> | <conponent -t ype> |<servi ce> | <l i brary>|<ext ensi on>) *

t ener - bi ndi ng> element

Appearsin: <conponent >

A listener binding is used to create application logic, in the form of alistener (for aDi r ect Li nk, Ac-
ti onLi nk, For m etc.) in place within the specification, in a scripting language (such as Jython or
JavaScript). The script itself isthe wrapped character datafor the<Il i st ener - bi ndi ng> element.

When the listener is triggered, the script is executed. Three beans, page, conponent and cycl e are
pre-declared.

The page is the page activated by the request. Usually, this is the same as the page which contains the
conponent ...infact, usualy page and conponent areidentical.

The conmponent is the component from whose specification the binding was created (that is, not the
Di r ect Li nk, but the page or component which embedsthe Di r ect Li nk).

Thecycl e isthe active request cycle, from which service parameters may be obtained.

FigureC.19. <l i st ener - bi ndi ng> Attributes

Name

Type Required ? Default Value Description

name

string yes The name of the
listener parameter to
bind.

language

string no The name of a BSF-
supported language
that the script is writ-
ten in. The default, if
not specified, s
j yt hon.

<MEeS

sage- bi ndi ng> element

57

../ComponentReference/DirectLink.html
../ComponentReference/ActionLink.html
../ComponentReference/ActionLink.html
../ComponentReference/Form.html
http://www.jython.org
../ComponentReference/DirectLink.html
../ComponentReference/DirectLink.html
http://jakarta.apache.org/bsf/

Tapestry Specification DTDs

Appearsin: <conponent >

Binds a parameter of an embedded component to alocalized string of its containing page or component.

In an instantiated component, bindings can be accessed with the OGNL expression bi ndi ngs. nane.

Figure C.20. <nessage- bi ndi ng> Attributes

Name Type Required ? Default Value Description

name string yes The name of the para-
meter to bind.

key string yes The localized prop-
erty key to retrieve.

<page> element

Appearsin: <appl i cati on>and<li brary-specification>

Defines a page within an application (or contributed by alibrary). Relates alogical name for the page to
the path to the page's specification file.

Figure C.21. <page> Attributes

Name

Type

Required ?

Default Value

Description

name

string

yes

The name for the
page, which must
start with a letter, and
may contain letters,
numbers, underscores
and the dash charac-
ter.

specification-path

string

yes

The path to the page's
specification, which
may be absolute (start
with a leading slash),
or relative to the ap-
plication or library

specification.

<page- speci fi cati on>element

root element

Defines a page within an application (or a library). The <page- speci fi cati on> is a subset of
<conponent - speci fi cat i on> with attributes and entities related to parameters removed.

58

Tapestry Specification DTDs

Figure C.22. <page- speci fi cat i on> Attributes

Name Type Required ? Default Value Description

class string no The Java class to in-
stantiate, which must
implement the inter-
face | Page. Typic-
aly, this is
BasePage or a sub-
class of it.
BasePage is the de-
fault if not otherwise
specified.

Figure C.23. <page- speci f i cat i on> Elements

<descri pti on>? <property>*,
(<bean> | <conponent > | <ext er nal - asset > | <cont ext - asset > |<pri vat e- asset > | <property- sy

<par anet er > element

Appearsin: <conponent - speci fi cati on>

Defines aformal parameter of a component. Parameters may be connected (i n, f or mor aut o) or un-
connected (cust o). If a parameter is connected, but the class does not provide the property (or does,
but the accessors are abstract), then the framework will create and use a subclass that contains the imple-
mentation of the necessary property.

For aut o parameters, the framework will create a synthetic property as a wrapper around the binding.
Reading the property will read the value from the binding and updating the property will update the
binding value. aut o may only be used with required parameters. aut o isless efficient thani n, but can
be used even when the component is not rendering.

Figure C.24. <par anet er > Attributes

Name Type Required ? Default Value Description

name string yes The name of the para-
meter, which must be
avalid Javaidentifier.

type scalar name, or class|no Required for connec-
name ted parameters. Spe-
cifies the type of the
JavaBean property
that a connected para-
meter writes and

59

../api/org/apache/tapestry/IPage.html
../api/org/apache/tapestry/html/BasePage.html
../api/org/apache/tapestry/html/BasePage.html

Tapestry Specification DTDs

Name

Type

Required ?

Default Value

Description

reads. The property
must match this exact
value, which can be a
fully specified class
name, or the name of
ascalar Javatype.

required

yes| no

no

no

If yes, then the para-
meter must be bound
(though it is possible
that the binding's
value will dill be
null).

property-name

string

no

For connected para
meters only; alows
the name of the prop-
erty to differ from the
name of the paramet-
er. If not specified,
the property name
will be the same as
the parameter name.

direction

in|formauto]c
ust om

no

custom

Identifies the se
mantics of how the
parameter is used by
the component. cus-
tom the default,
means the component
explicitly controls
reading and writing
values through the
binding.

i n means the prop-
erty is set from the
parameter before the
component renders,
and is reset back to
default value after the
component renders.

f or m means that the
property is set from
the parameter when
the component
renders (as with i n).
When the form is sub-
mitted, the value is
read from the prop-
erty and used to set
the binding value
after the component
rewinds.

aut o creates a syn-

60

Tapestry Specification DTDs

Name Type Required ? Default Value Description

thetic property that
works with the bind-
ing to read and up-
date. aut o paramet-
ers must be required,
but can be used even
when the component
is not rendering.

default-value OGNL expression no Specifies the default
value for the paramet-

er, if the parameter is
not bound.

<privat e- asset > element

Specifies located from the classpath. These exist to support reusable components packages (as part of a
<li brary-specification>)packagedinaJAR. Private assets will be localized.

Assets for an instantiated component (or page) may be accessed using the OGNL expression
assets. nane.

The resource path may either be complete and absolute, and start with aleading slash, or be relative. Re-
lative paths are evaluated relative to the location of the containing specification.

Figure C.25. <pri vat e- asset > Attributes

Name Type Required ? Default Value Description

name string yes The name of the as-
set, which must be a
valid Javaidentifier.

resource-path string yes The absolute or relat-
ive path to the asset

on the classpath.

<pr operty> element

Appearsin: many

The <pr opert y> element is used to store meta-data about some other element (it is contained within).
Tapestry ignores this meta-data Any number of name/value pairs may be stored. The value is provided
with theval ue attribute, or the character data for the <pr oper t y> element.

Figure C.26. <pr opert y> Attributes

61

Tapestry Specification DTDs

Name Type Required ? Default Value Description

name string yes The name of the prop-
erty.

value string no The vaue for the

property. If omitted,
the vaue is taken
from the character
data (the text the tag
wraps around). If spe-
cified, the character
dataisignored.

<property-specification>element

Appearsin: <conponent - speci fi cati on>, <page- speci fi cati on>

Defines a transient or persistent property to be added to the page or component. Tapestry will create a
subclass of the page or component class (at runtime) and add the necessary fields and accessor methods,
aswell as end-of-request cleanup.

It is acceptible for a page (or component) to be abstract, and have abstract accessor methods matching
the names that Tapestry will generate for the subclass. This can be useful when setting properties of the
page (or component) from alistener method.

A connected parameter specified in a<par anet er > element may also cause an enhanced subclass to
be created.

An initial value may be specified as either the i ni ti al - val ue attribute, or as the body of the
<property-specificati on>elementitself.

Figure C.27. <pr operty-speci fi cati on> Attributes

Name

Type Required ? Default Value Description

name

string yes The name of the prop-
erty to create.

type

string no java.lang.Object The type of the prop-
erty. If abstract ac-
cessors exist, they
must exactly match
this type. The type
may be either a fully
qualified class name,
or the name of one of
the basic scalar types
(int, boolean, etc.). It
may be suffixed with
[] to indicate an ar-
ray of the indicated

type.

persistent

yes| no no no If true, the generated
property will be per-

62

Tapestry Specification DTDs

Name Type Required ? Default Value Description
sistent, firing change
notifications when it
is updated.
initial-value string no An optiona OGNL

expression used to
initialize the property.
The expression is
evaluated only when
the page is first con-
structed.

<r eserved- par anet er > element

Appearsin: <conponent - speci fi cati on>

Used in components that alow informal parameters to limit the possible informa parameters (so that
there aren't conflicts with HTML attributes generated by the component).

All formal parameters are automatically reserved.

Comparisons are caseless, so an informal parameter of "SRC", "sRc", etc., will match a reserved para-
meter named "src” (or any variation), and be excluded.

Figure C.28. <r eser ved- par anet er > Attributes

Name

Type Required ? Default Value Description

name

string yes The name of the re-
served parameter.

<servi ce> element

Appearsin: <appl i cati on>and<li brary-specification>
Definesan | Engi neSer vi ce provided by the application or by alibrary.

The framework provides several services (home, direct, action, externa, etc.). Applications may over-
ride these services by defining different services with the same names.

Libraries that provide services should use a qualified name (that is, put a package prefix in front of the
name) to avoid name collisions.

Figure C.29. <ser vi ce> Attributes

Name Type Required ? Default Value Description
name string yes The name of the ser-
vice.

63

../api/org/apache/tapestry/IEngineService.html

Tapestry Specification DTDs

Name Type Required ? Default Value Description
class string yes The complete class
name to instantiate.
The class must have a
zero-arguments con-
structor and imple-
ment the interface
| Engi neServi ce
<set - nessage- propert y> element
Appearsin: <bean>
Allows a property of a helper bean to be set to alocalized string value of its containing page or compon-
ent.
Figure C.30. <set - nessage- pr opert y> Attributes
Name Type Required ? Default Value Description
name string yes The name of the help-
er bean property to
Set.
key string yes A string property key
of the containing page
or component.
<set - property>element
Appearsin: <bean>
Allows a property of a helper bean to be set to an OGNL expression (evaluated on the containing com-
ponent or page).
The value to be assigned to the bean property can be specified using the expr essi on attribute, or as
the content of the <set - pr oper t y> element itself.
Figure C.31. <set - pr opert y> Attributes
Name Type Required ? Default Value Description
name string yes The name of the help-
er bean property to
Set.
expression string no The OGNL expres-
sion used to set the
property.

../api/org/apache/tapestry/IEngineService.html

Tapestry Specification DTDs

<st ati c- bi ndi ng> element

Appearsin: <conponent >

Binds a parameter of an embedded component to a static value. The value, which is stored as a string, is
specified asthe val ue attribute, or as the wrapped contents of the <st at i ¢- bi ndi ng> tag. Leading
and trailing whitespace is removed.

In an instantiated component, bindings can be accessed with the OGNL expression bi ndi ngs. nane.

FigureC.32. <st at i c- bi ndi ng> Attributes

Name Type Required ? Default Value Description

name string yes The name of the para-
meter to bind.

value string no The string value to be

used. If omitted, the
wrapped character
data is used instead
(which is more convi-
enient if the value is
large, or contains
problematic punctu-
ation).

65

Appendix D. Tapestry Script
Specification DTD

Tapestry Script Specifications are frequently used with the Scri pt component, to create dynamic
JavaScript functions, typically for use as event handlers for client-side logic.

Theroot elementis<scri pt >.

A script specifcation is a kind of specialized template that takes some number of input symbols and
combines and manipulates them to form output symbols, as well as body and initialization. Symbols
may be simple strings, but are also frequently objects or components.

Script specifications use an Ant-like syntax to insert dynamic values into text blocks. ${ OGNL ex-
pressi on}. The expression is evaluated relative to a Map of symbols.

<body> element

<f or

Appearsin: <scri pt >

Specifies the main body of the JavaScript; this is where JavaScript variables and methods are typically
declared. This body will be passed to the Body component for inclusion in the page.

FigureD.1. <body> Elements

(text |<foreach>|<if>|<if-not>]|<unique>)*

each> element

Appears in: many

An element that renders its body repeatedly, much like a For each component. An expression supplies
acollection or array of objects, and its body is rendered for each element in the collection.

Figure D.2. <f or each> Attributes

Name

Type Required ? Default Value Description

key

string yes The symbol to be up-
dated with each suc-
cessive value.

expression

string yes The OGNL expres-
sion which provides
the source of ele
ments.

index

string no If specified, then the
named symbol is up-
dated with each suc-

66

../ComponentReference/Script.html
../ComponentReference/Body.html
../ComponentReference/Foreach.html

Tapestry Script Specification DTD

Name Type Required ? Default Value

Description

cessive index.

FigureD.3. <f or each> Elements

(text |<foreach>|<if>|<if-not>]|<unique>)*

<i f > element
Appearsin: many

Conditionally renders its body, if a supplied OGNL expression istrue.

FigureD.4. <i f > Attributes

Name Type Required ? Default Value Description
expression string yes The OGNL expres-
sion to be evaluated.
FigureD.5. <i f > Elements
(text |<foreach>|<if>|<if-not>]|<uni que>)*

<i f - not > element

Appearsin: many

Conditionally renders its body, if a supplied OGNL expression isfalse.

FigureD.6. <i f - not > Attributes
Name Type Required ? Default Value Description
expression string yes The OGNL expres-

sion to be evaluated.

67

Tapestry Script Specification DTD

FigureD.7.<i f - not > Elements

(text |<foreach>|<if>|<if-not>]|<uni que>)*

<i ncl ude-scri pt > element

Appearsin: <scri pt >

Used to include a static JavaScript library. A library will only be included once, regardless of how many
different scripts reference it. Such libraries are located on the classpath.

FigureD.8. <i ncl ude- scri pt > Attributes

Name Type Required ? Default Value Description
resource-path string yes The location of the
JavaScript library.

<initializati on>element

Appearsin: <scri pt >

Defines initialization needed by the remainder of the script. Such initialization is placed inside a method
invoked from the HTML <body> element'sonl oad event handler ... that is, whatever is placed inside
this element will not be executed until the entire page isloaded.

FigureD.9.<initial i zati on>Elements

(text |<foreach>|<if>|<if-not>|<unique>)*

<I nput - synbol > element

Appearsin: <scri pt >

Defines an input symbol for the script. Input symbols can be thought of as parameters to the script. As
the script executes, it uses the input symbols to create new output symbols, redefine input symbols (not a
recommended practice) and define the body and initialization.

This element allows the script to make input symbols required and to restrict their type. Invalid input
symbols (missing when required, or not of the correct type) will result in runtime exceptions.

68

Tapestry Script Specification DTD

Figure D.10. <i nput - synbol > Attributes

Name

Type

Required ?

Default Value

Description

key

string

yes

The input symbol to
be checked.

class

string

no

If specified, thisis the
complete, qudlified
class name for the
symbol. The provided
symbol must be as
signable to this class
(be a subclass, or im-
plement the specified
class if the specified
classis actualy an in-
terface).

required

yes | no

no

no

If yes, then a non-
null value must be
specified for the sym-
bol.

<| et > element

Appearsin: <scri pt >

Used to define (or redefine) a symbol. The symbol's value is taken from the body of element (with lead-
ing and trailing whitespace removed).

FigureD.11. <I et > Attributes

Name Type Required ? Default Value Description

key string yes The key of the sym-
bol to define.

unique boolean yes| no no If yes, then the string

is ensured to be
unique (by possibly
adding a suffix) be-
fore being assigned to
the symbol.

FigureD.12. <I| et > Elements

(text |<foreach>|<if>|<if-not>|<unique>)*

69

Tapestry Script Specification DTD

<scri pt > element

<set > element

Appearsin: <scri pt >

Root €lement

The root element of a Tapestry script specification.

FigureD.13. <scr i pt > Elements

<i ncl ude-scri pt >*, <i nput - synbol >*,

(<l et > | <set >) *,
<body>?<initialization>?

A different way to define a new symbol, or redefine an existing one. The new symbol is defined using

an OGNL expression.

FigureD.14. <set > Attributes

Name Type Required ? Default Value Description

key string yes The key of the sym-
bol to define.

expression string yes The OGNL expres-
sion to evaluate.

<uni que> element

Appears in: many

Creates a block whose contents are contributed only once, no matter how many times the block is evalu-

ated during the rendering of asingle page.

FigureD.15. <uni que> Elements

(text |<foreach>|<if>|<if-not>]|<unique>)*

70

